首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribonuclease III (RNase III) type of enzymes are double-stranded RNA (dsRNA)-specific endoribonucleases that have important roles in RNA maturation and mRNA decay. They are involved in processing precursors of ribosomal RNA (rRNA) in bacteria as well as precursors of short interfering RNAs (siRNAs) and microRNAs (miRNAs) in eukaryotes. RNase III proteins have been grouped in three major classes according to their domain organization. In this issue of Molecular Microbiology, Redko et al. identified a novel class of bacterial RNase III, named Mini-III, consisting only of the RNase III catalytic domain and functioning in the maturation of the 23S rRNA in Bacillus subtilis. Its absence from proteobacteria reveals that this step is mechanistically different from the corresponding step in Escherichia coli. The fact that Mini-III orthologues are present in unicellular photosynthetic eukaryotes and in plants opens new opportunities for functional studies of this type of RNases.  相似文献   

2.
3.
We recently showed that RNase III can process a small stable RNA, precursor 10Sa RNA, that accumulates in an rne (RNase E) strain at non-permissive temperatures. Precursor 10Sa (p10Sa) RNA is processed to 10Sa RNA in two steps, the first step is catalyzed by RNase III in the presence of Mn2+ but not Mg2+. It was shown that RNase III cosediments with membrane preparation from wild type as well as RNase III overexpressing cells. However, the possibility of membrane preparation contamination with ribosomes could not be ruled out. Here we show that RNase III, E and P are not associated with ribosomes. E. coli cells were opened either by alumina grinding or by sonication and fractionated into cytosolic and pellet fractions. The characterization of membrane preparations was done by assaying NADH oxidase, a bona fide membrane enzyme. Ribosomes prepared by alumina grinding were found to be contaminated with small fragments of membrane which contained RNase III activity. RNase III and NADH oxidase activities were present in the ribosomal preparations which could be solubilized by reagents that dissolve the inner membrane. Isopycnic sucrose gradient centrifugation of the membrane and ribosomal preparations also confirmed that RNase III fractionated with the inner membrane. Similarly RNase P activity was found in the corresponding fractions when isopycnic centrifugation of membrane and ribosome preparations was carried out. RNase E activity was also found to be present mostly in the post-ribosomal supernatant. These findings show that RNase III, E and P are not ribosomal enzymes.  相似文献   

4.
5.
6.
7.
The maturation of ribosomal RNAs (rRNAs) is an important but incompletely understood process required for rRNAs to become functional. In order to determine the enzymes responsible for initiating 3' end maturation of 23S rRNA in Escherichia coli, we analyzed a number of strains lacking different combinations of 3' to 5' exo-RNases. Through these analyses, we identified RNase PH as a key effector of 3' end maturation. Further analysis of the processing reaction revealed that the 23S rRNA precursor contains a CC dinucleotide sequence that prevents maturation from being performed by RNase T instead. Mutation of this dinucleotide resulted in a growth defect, suggesting a strategic significance for this RNase T stalling sequence to prevent premature processing by RNase T. To further explore the roles of RNase PH and RNase T in RNA processing, we identified a subset of transfer RNAs (tRNAs) that contain an RNase T stall sequence, and showed that RNase PH activity is particularly important to process these tRNAs. Overall, the results obtained point to a key role of RNase PH in 23S rRNA processing and to an interplay between this enzyme and RNase T in the processing of different species of RNA molecules in the cell.  相似文献   

8.
9.
An Arabidopsis mutant rnr1, which has a defect in the basic genetic system in chloroplasts, was isolated using the screening of the high chlorophyll fluorescence phenotype. Whereas chlorophyll fluorescence and immunoblot studies showed the mutant had reduced activities of photosystems I and II, molecular characterization of the mutant suggested that a T-DNA insertion impaired the expression of a gene encoding a RNase R family member with a targeting signal to chloroplasts. Since RNase R family members have a 3–5 exoribonuclease activity, we examined the RNA profile in chloroplasts. In rnr1 the intercistronic cleavage between 23S and 4.5S rRNA was impaired, and a significant reduction in rRNA in chloroplasts was found, suggesting that RNR1 functions in the maturation of chloroplast rRNA. The present results suggest that defects in the genetic system in chloroplasts cause high chlorophyll fluorescence, pale green leaf, and marked reduction in the growth rate, whereas the levels of some chloroplast RNA were higher in rnr1 than in the wild-type.  相似文献   

10.
B Meyhack  B Pace  N R Pace 《Biochemistry》1977,16(23):5009-5015
In vitro maturation of precursor 5S ribosomal RNA (p5A) from Bacillus subtilis effected by RNase M5 yields mature 5S RNA (m5, 116 nucleotides), and 3' precursor-specific segment (42 nucleotides), and a 5' precursor-specific segment (21 nucleotides) (Sogin, M.L., Pace, B., and Pace, N.R. (1977), J. Biol. Chem. 252, 1350). Limited digestion of p5A with RNase T2 introduces a single scission at position 60 of the molecule; m5 is cleaved at the corresponding nucleotide residue. The complementary "halves" of the molecules could be isolated from denaturing polyacrylamide gels. The isolated fragments of p5A are not substrates for RNase M5, suggesting that some recognition elements can be utilized by RNase M5 only when presented in double-helical form. In exploring the involvement of the precursor-specific segments in the RNase M5-p5A interaction, substrate molecules lacking the 3' or 5' precursor-specific segment were constructed by reannealing complementary "halves" from p5A and m5 RNA. The artificial substrate lacking the 5'-terminal precursor segment was cleaved very much more slowly than the lacking t' segment; the 5' precursor-specific segment therefore contains one or more components recognized by RNase M5 during its interaction with the p5A substrate.  相似文献   

11.
B Meyhack  N R Pace 《Biochemistry》1978,17(26):5804-5810
A precursor of 5S ribosomal RNA from Bacillus subtilis (p5A rRNA, 179 nucleotides in length) is cleaved by RNase M5, a specific maturation endonuclease which releases the mature 5S rRNA (m5, 116 nucleotides) and precursor fragments derived from the 5' (21 nucleotides) and 3' (42 nucleotides) termini of p5A rRNA. Previous results (Meyhack, B., et al. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 3045) led to the conclusion that recognition elements in potential RNase M5 substrates mainly reside in the mature moiety of the precursor. Limited digestion of p5A rRNA with RNase T1 permitted the isolation of a number of test substrates which contained both precursor-specific segments and were unaltered in the immediate vicinity of the cleavage sites, but which differed in that more or less extensive regions of the mature moiety of the p5A rRNA were deleted. Tests of the capacity of these partial molecules to serve as substrates for RNase M5 indicate clearly that the enzyme recognizes the overall conformation of potential substrates, neglecting only the double-helical "prokaryotic loop" (Fox, G.E., & Woese, C.R. (1975) Nature (London) 256, 505).  相似文献   

12.
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation.  相似文献   

13.
14.
L H Chang  A G Marshall 《Biopolymers》1986,25(7):1299-1313
The unfolding of B. subtilis 5S RNA is examined by direct calorimetric measurement in the presence of various concentrations of Na+ and Mg2+. The composite differential scanning calorimetry (DSC) curve is analyzed into 3–5 individual two-state melting transitions. In the absence of added Na+ or Mg2+, the 5S RNA segments melt together at Tm = 40°C. Addition of Na+ stabilizes the molecular structure (Tm = 56°C) and widens the melting temperature range, so that up to five component transitions are observed. Addition of Mg2+ alone produces a very stable structure (Tm = 75°C) with highly cooperative melting. Finally, addition of both Na+ and Mg2+ produces the highest stability (Tm = 76°C). The results are interpreted according to hypothetical secondary and tertiary base-pairing schemes. The conformational changes demonstrated here may facilitate the movement of the protein synthesis machinery during RNA translation.  相似文献   

15.
16.
Precursors of 5 S ribosomal RNA in Bacillus subtilis   总被引:8,自引:0,他引:8  
Bacillus subtilis 168 accumulates subnormal quantities of mature 5 S ribo-somal RNA in the presence of inhibitors of protein synthesis, such as chloramphenicol, or during pulse-labeling experiments. However, two RNA species, evidently precursors of m5 rRNA and therefore designated as p5A and p5B, do accumulate under these conditions. These RNA species are substantially longer than B. subtilis m5 rRNA: p5A is about 179 nucleotides in length and p5B is composed of approximately 152 nucleotides. The sum of p5A, p5B and m5 rRNA accumulating in the absence of protein synthesis, less excess chain length associated with p5A and p5B, equals the expected quantities of m5 rRNA in growing cells. p5A and p5PB both contain all t1 RNase-generated oligonucleotides characteristic of m5 rRNA plus additional sequences. At least the 5′ termini of p5A and p5B differ from that of m5. If chloramphenicol is removed from a culture in which p5A and p5B have accumulated and further RNA synthesis is inhibited, then a quantitative reciprocal loss of p5A and p5B occurs as m5 rRNA accumulates. No evidence suggests any p5A to p5B transition under these conditions.  相似文献   

17.
18.
Ribonuclease P (RNase P) is a ribozyme required for the 5' maturation of all tRNA. RNase P and the ribosome are the only known ribozymes conserved in all organisms. We set out to determine whether this ribonucleoprotein enzyme interacts with other cellular components, which may imply other functions for this conserved ribozyme. Incubation of the Bacillus subtilis RNase P holoenzyme with fractionated B. subtilis cellular extracts and purified ribosomal subunits results in the formation of a gel-shifted complex with the 30S ribosomal subunit at a binding affinity of approximately 40 nM in 0.1 M NH(4)Cl and 10 mM MgCl(2). The complex does not form with the RNase P RNA alone and is disrupted by a mRNA mimic polyuridine, but is stable in the presence of high concentrations of mature tRNA. Endogenous RNase P can also be detected in the 30S ribosomal fraction. Cleavage of a pre-tRNA substrate by the RNase P holoenzyme remains the same in the presence of the 30S ribosome, but the cleavage of an artificial non-tRNA substrate is inhibited eightfold. Hydroxyl radical protection and chemical modification identify several protected residues located in a highly conserved region in the RNase P RNA. A single mutation within this region significantly reduces binding, providing strong support on the specificity of the RNase P-30S ribosome complex. Our results also suggest that the dimeric form of the RNase P is primarily involved in 30S ribosome binding. We discuss several models on a potential function of the RNase P-30S ribosome complex.  相似文献   

19.
Members of the RNase superfamily participate in a diverse array of biological processes, including RNA degradation, antipathogen activities, angiogenesis, and digestion. In the present study, we cloned the rat RNase9 gene by in silico methods and genome walking based on homology to the Macaca mulatta (rhesus monkey) epididymal RNase9. The gene is located on chromosome 15p14, spanning two exons, and is clustered with other members of the RNase A superfamily. It contains 1279 bp and encodes 182 amino acids, including a 24-amino acid signal peptide, and it has unique features known from other RNases. Unlike those other members, the rat RNase9 mRNA was specifically expressed in the epididymis, especially in the caput and corpus, and exhibited an androgen-dependent expression pattern but was downregulated in an epididymitis animal model. The RNASE9 was expressed in a principal cell-specific pattern. Interestingly, most of the principal cells in the caput expressed the RNASE9; however, in the distal caput, the principal cells showed a checkerboard-like pattern of immunoreactivity. We also observed that the RNASE9 was bound on the acrosomal domain of sperm. Its potential roles in sperm maturation are discussed.  相似文献   

20.
M F Guérin  D Hayes 《Biochimie》1983,65(6):345-354
Total RNA prepared from E. coli by several extraction procedures behaves as a mixture of covalently continuous heat stable 23S, 16S and 4-5S components. 16S rRNA remains heat stable after isolation from such preparations, whereas isolated 23S rRNA is heat labile but becomes heat stable after EDTA treatment. This and other evidence leads to the conclusion that heat lability of purified 23S rRNA is due, not to nuclease contamination of the type observed in earlier studies of the stability of this RNA, but to polyvalent cation catalyzed temperature-dependent scission of phosphodiester bonds. Heat stability of 23S rRNA in total RNA is due to the presence in these preparations of a contaminant which appears to act as a chelator of polyvalent cations. This material is similar or identical to the pyrogenic E. coli lipopolysaccharide described by Westphal and coll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号