首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorting of von Willebrand factor precursor (pro-vWf) from the trans-Golgi network to secretory granules (Weibel-Palade bodies) is critical for its conversion to the biologically active highly multimeric form, as well as for regulated secretion by the endothelial cells. When expressed in hormone-secretory cells, vWf is also recognized as a stored protein and is directed to storage granules. Recently, carboxypeptidase E (CPE) was proposed as a granular sorting receptor for prohormones (Cool et al., Cell 88: 73, 1997). To explore whether CPE is also involved in pro-vWf sorting, we initially examined its expression in human umbilical vein endothelial cells. A specific message for CPE and the protein itself were detected making it a plausible candidate as a targeting receptor for vWf in endothelium. To investigate this possibility, we used mice lacking CPE. The highly multimeric forms, subunit composition and plasma levels of vWf in CPE-deficient mice were similar to those of their wild-type littermates. vWf was also found in alpha-granules of platelets and in Weibel-Palade bodies of endothelial cells obtained from the CPE-deficient mice. Furthermore, vWf was released from the cultured CPE-deficient endothelial cells after stimulation with a secretagogue. We conclude that CPE is not essential for sorting vWf to the regulated secretory pathway. Thus, a CPE-independent mechanism must exist for protein sorting to storage granules.  相似文献   

2.
Sorting of the prohormone POMC to the regulated secretory pathway necessitates the binding of a sorting signal to a sorting receptor, identified as membrane carboxypeptidase E (CPE). The sorting signal, located at the N terminus of POMC consists of two acidic (Asp10, Glu14) and two hydrophobic (Leu11, Leu18) residues exposed on the surface of an amphipathic loop. In this study, molecular modeling of CPE predicted that the acidic residues in the POMC-sorting signal bind specifically to two basic residues, Arg255 and Lys260, present in a loop unique to CPE, compared with other carboxypeptidases. To test the model, these two residues on CPE were mutated to Ser or Ala, followed by baculovirus expression of the mutant CPEs in Sf9 cells. Sf9 cell membranes containing CPE mutants with either Arg255 or Lys260, or both residues substituted, showed no binding of [125I]N-POMC1-26 (which contains the POMC-sorting signal motif), proinsulin, or proenkephalin. In contrast, substitution of an Arg147 to Ala147 at a substrate-binding site, Arg259 to Ala259 and Ser202 to Pro202, in CPE did not affect the level of [125I]N-POMC1-26 binding when compared with-wild type CPE. Furthermore, mutation of the POMC-sorting signal motif (Asp10, Leu11, Glu14, Leu18) eliminated binding to wild-type CPE. These results indicate that the sorting signal of POMC, proinsulin, and proenkephalin specifically interacts with Arg255 and Lys260 at a novel binding site, independent of the active site on CPE.  相似文献   

3.
Prohormones are directed from the trans-Golgi network to secretory granules of the regulated secretory pathway. It has further been proposed that prohormone conversion by endoproteolysis may be necessary for subsequent retention of peptides in granules and to prevent their release by the so-called "constitutive-like" pathway. To address this directly, mutant human proinsulin (Arg/Gly(32):Lys/Thr(64)), which cannot be cleaved by conversion endoproteases, was expressed in primary rat islet cells by recombinant adenovirus. The handling of the mutant proinsulin was compared with that of wild-type human proinsulin. Infected islet cells were pulse labeled and both basal and stimulated secretion of radiolabeled products followed during a chase. Labeled products were quantified by high-performance liquid chromatography. As expected, the mutant proinsulin was not converted at any time. Basal (constitutive and constitutive-like) secretion was higher for the mutant proinsulin than for wild-type proinsulin/insulin, but amounted to <1% even during a prolonged (6-h) period of basal chase. There was no difference in stimulated (regulated) secretion of mutant and wild-type proinsulin/insulin at any time. Thus, in primary islet cells, unprocessed (mutant) proinsulin is sorted to the regulated pathway and then retained in secretory granules as efficiently as fully processed insulin.  相似文献   

4.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

5.
Little is known about the molecular mechanism of recycling of intracellular receptors and lipid raft-associated proteins. Here, we have investigated the recycling pathway and internalization mechanism of a transmembrane, lipid raft-associated intracellular prohormone sorting receptor, carboxypeptidase E (CPE). CPE is found in the trans-Golgi network (TGN) and secretory granules of (neuro)endocrine cells. An extracellular domain of the IL2 receptor alpha-subunit (Tac) fused to the transmembrane domain and cytoplasmic tail of CPE (Tac-CPE25) was used as a marker to track recycling of CPE. We show in (neuro)endocrine cells, that upon stimulated secretory granule exocytosis, raft-associated Tac-CPE25 was rapidly internalized from the plasma membrane in a clathrin-independent manner into early endosomes and then transported through the endocytic recycling compartment to the TGN. A yeast two-hybrid screen and in vitro binding assay identified the CPE cytoplasmic tail sequence S472ETLNF477 as an interactor with active small GTPase ADP-ribosylation factor (ARF) 6, but not ARF1. Expression of a dominant negative, inactive ARF6 mutant blocked this recycling. Mutation of residues S472 or E473 to A in the cytoplasmic tail of CPE obliterated its binding to ARF6, and internalization from the plasma membrane of Tac-CPE25 mutated at S472 or E473 was significantly reduced. Thus, CPE recycles back to the TGN by a novel mechanism requiring ARF6 interaction and activity.  相似文献   

6.
AtT20 (pituitary corticotroph) cells were transfected with either the native or a mutant [AspB10]rat insulin II gene, using a plasmid containing the insulin gene and a neomycin resistance gene under the control of independent constitutive promoters. The cellular immunoreactive insulin (IRI) content ranged from 0.8-440 ng/10(6) cells, with the highest value similar to that found for a rat insulinoma cell line (RIN) and corresponding to approximately 1% that of native pancreatic B-cells. There was a direct correlation between insulin mRNA levels and IRI content and no correlation between mRNA levels and rat insulin II gene copy number. Furthermore, in some lines the insulin II transgene was lost even though the gene encoding neomycin resistance was retained. IRI release was stimulated up to 4-fold by isobutylmethylxanthine in all lines transfected with the native rat insulin II gene, and HPLC analysis showed most IRI as fully processed insulin, with less than 5% as proinsulin. These cells, thus, directed most proinsulin to secretory granules for conversion and regulated release regardless of the absolute amount of IRI expressed. One of the lines transfected with the AspB10 mutant gene (line AA9) released nearly 50% of IRI as proinsulin under basal conditions, with stimulation of insulin, but not proinsulin, release by isobutylmethylxanthine. This confirmed our previous finding of partial diversion of this mutant proinsulin from the regulated to the constitutive pathway. A second line (IC6) expressing the same mutant gene at much higher levels appeared to direct all mutant proinsulin to the regulated pathway, suggesting that for this particular mutant proinsulin, the secretory pathway employed by the transfected cells can be affected by the amount of proinsulin synthesized.  相似文献   

7.
Human proinsulin and insulin oligomerize to form dimers and hexamers. It has been suggested that the ability of prohormones to self associate and form aggregates may be responsible for the sorting process at the trans-Golgi. To examine whether insulin oligomerization is required for proper sorting into regulated storage granules, we have constructed point mutations in human insulin B chain that have been previously shown to prevent formation of insulin hexamers (Brange, J., U. Ribel, J. F. Hansen, G. Dodson, M. T. Hansen, S. Havelund, S. G. Melberg, F. Norris, K. Norris, L. Snel, A. R. Sorensen, and H. O. Voight. 1988. Nature [Lond.]. 333:679-682). One mutant (B10His----Asp) allows formation of dimers but not hexamers and the other (B9Ser----Asp) prevents formation of both dimers and hexamers. The mutants were transfected into the mouse pituitary AtT-20 cells, and their ability to be sorted into regulated secretory granules was compared to wild-type insulin. We found that while B10His----Asp is sorted somewhat less efficiently than wild-type insulin as reported previously (Carroll, R. J., R. E. Hammer, S. J. Chan, H. H. Swift, A. H. Rubenstein, and D. F. Steiner. 1988. Proc. Natl. Acad. Sci. USA. 85:8943-8947; Gross, D. J., P. A. Halban, C. R. Kahn, G. C. Weir, and L. Villa-Kumaroff. 1989. Proc. Natl. Acad. Sci. USA. 86:4107-4111). B9Ser----Asp is targeted to granules as efficiently as wild-type insulin. These results indicate that self association of proinsulin into hexamers is not required for its targeting to the regulated secretory pathway.  相似文献   

8.
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain — C-peptide — A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.  相似文献   

9.
Phogrin is an integral glycoprotein primarily expressed in neuroendocrine cells. The predominant localization of phogrin is on dense-core secretory granules, and the lumenal domain has been shown to be involved in its efficient sorting to the regulated secretory pathway. Here, we present data showing that a leucine-based sorting signal [EExxxIL] within the cytoplasmic tail contributes its steady-state localization to secretory granules. Deletion mutants in the tail region failed to represent granular distribution in pancreatic beta-cell line, MIN6, and anterior pituitary cell line, AtT-20. A sorting signal mutant with two glutamic acids substituted into alanines (EE/AA) is primarily accumulated in the Golgi area instead of secretory granules, and another mutant (IL/AA) is trapped at the plasma membrane due to a defect in endocytosis. We further demonstrate that the leucine-based sorting signal of phogrin specifically interacts with both adaptor protein (AP)-1 and AP-2 clathrin adaptor complexes in vitro. These observations, along with previous studies, suggest that distinct domains of phogrin mediate proper localization of this transmembrane protein on secretory granules.  相似文献   

10.
Sorting ourselves out: seeking consensus on trafficking in the beta-cell   总被引:2,自引:0,他引:2  
Biogenesis of the regulated secretory pathway in the pancreatic beta-cell involves packaging of products, notably proinsulin, into immature secretory granules derived from the trans -Golgi network. Proinsulin is converted to insulin and C-peptide as granules mature. Secretory proteins not entering granules are conveyed by transport intermediates directly to the plasma membrane for constitutive secretion. One of the co-authors, Peter Arvan, has proposed that in addition, small vesicles bud from granules to traffic to the endosomal system. From there, some proteins are secreted by a (post-granular) constitutive-like pathway. He argues that retention in granules is facilitated by condensation, rendering soluble products (notably C-peptide and proinsulin) more available for constitutive-like secretion. Thus he argues that prohormone conversion is potentially important in secretory granule biogenesis. The other co-author, Philippe Halban, argues that the post-granular secretory pathway is not of physiological relevance in primary beta-cells, and contests the importance of proinsulin conversion for retention in granules. Both, however, agree that trafficking from granules to endosomes is important, purging granules of unwanted newly synthesized proteins and allowing their traffic to other destinations. In this Traffic Interchange, the two co-authors attempt to reconcile their differences, leading to a common vision of proinsulin trafficking in primary and transformed cells.  相似文献   

11.
Chromogranins are a family of regulated secretory proteins that are stored in secretory granules in endocrine and neuroendocrine cells and released in response to extracellular stimulation (regulated secretion). A conserved N-terminal disulfide bond is necessary for sorting of chromogranins in neuroendocrine PC12 cells. Surprisingly, this disulfide bond is not necessary for sorting of chromogranins in endocrine GH4C1 cells. To investigate the sorting mechanism in GH4C1 cells, we made several mutant forms removing highly conserved N- and C-terminal regions of bovine chromogranin A. Removing the conserved N-terminal disulfide bond and the conserved C-terminal dimerization and tetramerization domain did not affect the sorting of chromogranin A to the regulated secretory pathway. In contrast, removing the C-terminal 90 amino acids of chromogranin A caused rerouting to the constitutive secretory pathway and impaired aggregation properties as compared with wild-type chromogranin A. Since this mutant was sorted to the regulated secretory pathway in PC12 cells, these results demonstrate that chromogranins contain independent N- and C-terminal sorting domains that function in a cell type-specific manner. Moreover, this is the first evidence that low pH/calcium-induced aggregation is necessary for sorting of a chromogranin to the regulated secretory pathway of endocrine cells.  相似文献   

12.
Processing of proinsulin by transfected hepatoma (FAO) cells.   总被引:2,自引:0,他引:2  
Rat hepatoma (FAO) cells were stably transfected with the gene encoding either rat proinsulin II (using the DOL retroviral vector) or human proinsulin (using the RSV retroviral vector). Using the DOL vector, production of insulin immunoreactive material was stimulated up to 30-fold by dexamethasone (5 x 10(-7) M). For both proinsulins, fractional release of immunoreactive material relative to cellular content was high, in keeping with the absence of any storage compartment for secretory proteins in these cells. Pulse-chase experiments showed kinetics of release of newly synthesized products in keeping with release via the constitutive pathway. High performance liquid chromatography analysis showed immunoreactivity in the medium distributed between three peaks. For rat proinsulin II, the first coeluted with intact proinsulin; the second coeluted with des-64,65 split proinsulin (the product of endoproteolytic attack between the insulin A-chain and C-peptide followed by trimming of C-terminal basic residues by carboxypeptidase); the third (and minor peak) coeluted with native (fully processed) insulin. For human proinsulin, by contrast, the second peak coeluted with des-31,32 split proinsulin (split and trimmed at the B-chain/C-peptide junction). Analysis of cellular extracts showed intact proinsulin as the major product. The generation of the putative conversion intermediates and insulin was not due to proteolysis of proinsulin after its release but rather to an intracellular event. The data suggest that proinsulin, normally processed in secretory granules and released via the regulated pathway, may also be processed, albeit less efficiently, by the constitutive pathway conversion machinery. The comparison of the sites preferentially cleaved in rat II or human proinsulin suggests cleavage by endoprotease(s) with a preference for R/KXR/KR as substrate.  相似文献   

13.
Membrane carboxypeptidase E (CPE) is a sorting receptor for targeting prohormones, such as pro-opiomelanocortin, to the regulated secretory pathway in endocrine cells. Its membrane association is necessary for it to bind a prohormone sorting signal at the trans-Golgi network (TGN) to facilitate targeting. In this study, we examined the lipid interaction of CPE in bovine pituitary secretory granule membranes, which are derived from the TGN. We show that CPE is associated with detergent-resistant lipid domains, or rafts, within secretory granule membranes. Lipid analysis revealed that these rafts are enriched in glycosphingolipids and cholesterol. Pulse-chase and subcellular fractionation experiments in AtT-20 cells show that the association of CPE with membrane rafts occurred only after it reached the Golgi. Cholesterol depletion resulted in dissociation of CPE from secretory granule membranes and decreased the binding of prohormones to membranes. In vivo cholesterol depletion using lovastatin resulted in the lack of sorting of CPE and its cargo to the regulated secretory pathway. We propose that the sorting receptor function of CPE necessitates its interaction with glycosphingolipid-cholesterol rafts at the TGN, thereby anchoring it in position to bind to its prohormone cargo.  相似文献   

14.
To gain insight into the mechanisms governing protein sorting, we have developed a system that reconstitutes both the formation of immature secretory granules and their fusion with the plasma membrane. Semi- intact PC12 cells were incubated with ATP and cytosol for 15 min to allow immature granules to form, and then in a buffer containing 30 microM [Ca2+]free to induce exocytosis. Transport via the regulated pathway, as assayed by the release of secretogranin II (SgII) labeled in the TGN, was inhibited by depletion of ATP, or by the inclusion of 100 microM GTP gamma S, 50 microM AlF3-5 or 5 micrograms/ml BFA. When added after immature granules had formed, GTP gamma S stimulated rather than inhibited exocytosis. Thus, exocytosis of immature granules in this system resembles the characteristics of fully matured granules. Transport of SgII via the regulated pathway occurred at a fourfold higher efficiency than glycosaminoglycan chains, indicating that SgII is sorted to some extent upon exit from the TGN. Addition of A23187 to release Ca2+ from the TGN had no significant effect on sorting of SgII into immature granules. In contrast, depletion of lumenal calcium inhibited the endoproteolytic cleavage of POMC and proinsulin. These results establish the importance of intra-cisternal Ca2+ in prohormone processing, but raise the question whether lumenal calcium is required for proper sorting of SgII into immature granules. Disruption of organelle pH gradients with an ionophore or a weak base resulted in the inhibition of transport via both the constitutive and the regulated pathways.  相似文献   

15.
Exocrine cells have an essential function of sorting secreted proteins into the correct secretory pathway. A clear understanding of sorting in salivary glands would contribute to the correct targeting of therapeutic transgenes. The present work investigated whether there is a change in the relative proportions of basic proline-rich protein (PRP) and acidic PRPs in secretory granules in response to chronic isoproterenol treatment, and whether this alters the sorting of endogenous cargo proteins. Immunoblot analysis of secretory granules from rat parotids found a large increase of basic PRP over acidic PRPs in response to chronic isoproterenol treatment. Pulse chase experiments demonstrated that isoproterenol also decreased regulated secretion of newly synthesized secretory proteins, including PRPs, amylase and parotid secretory protein. This decreased efficiency of the apical regulated pathway may be mediated by alkalization of the secretory granules since it was reversed by treatment with mild acid. We also investigated changes in secretion through the basolateral (endocrine) pathways. A significant increase in parotid secretory protein and salivary amylase was detected in sera of isoproterenol-treated animals, suggesting increased routing of the regulated secretory proteins to the basolateral pathway. These studies demonstrate that shifts of endogenous proteins can modulate regulated secretion and sorting of cargo proteins. amylase; parotid secretory protein; polarized secretion  相似文献   

16.
Rat prothyrotropin-releasing hormone (pro-TRH) is endoproteolyzed within the regulated secretory pathway of neuroendocrine cells yielding five TRH peptides and seven to nine other unique peptides. Endoproteolysis is performed by two prohormone convertases, PC1 and PC2. Proteolysis of pro-TRH begins in the trans-Golgi network and forms two intermediates that are then differentially processed as they exit the Golgi and are packaged into immature secretory granules. We hypothesized that this initial endoproteolysis may be necessary for downstream sorting of pro-TRH-derived peptides as it occurs before Golgi exit and thus entry into the regulated secretory pathway. We now report that when pro-TRH is transiently expressed in GH4C1 cells, a neuroendocrine cell line lacking PC1, under pulse-chase conditions release is constitutive and composed of more immature processing intermediates. This is also observed by radioimmunoassay under steady-state conditions. When a mutant form of pro-TRH, which has the dibasic sites of initial processing mutated to glycines, is expressed in AtT20 cells, a neuroendocrine cell line endogenously expressing PC1, both steady-state and pulse-chase experiments revealed that peptides derived from this mutant precursor are secreted in a constitutive fashion. A constitutively secreted form of PC1 does not target pro-TRH peptides to the constitutive secretory pathway but results in sorting to the regulated secretory pathway. These results indicated that initial processing action of PC1 on pro-TRH in the trans-Golgi network, and not a cargo-receptor relationship, is important for the downstream sorting events that result in storage of pro-TRH-derived peptides in mature secretory granules.  相似文献   

17.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

18.
Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.  相似文献   

19.
Constitutive and basal secretion from the endocrine cell line, AtT-20   总被引:14,自引:4,他引:10       下载免费PDF全文
A variant of the ACTH-secreting pituitary cell line, AtT-20, has been isolated that does not make ACTH, sulfated proteins characteristic of the regulated secretory pathway, or dense-core secretory granules but retains constitutive secretion. Unlike wild type AtT-20 cells, the variant cannot store or release on stimulation, free glycosaminoglycan (GAG) chains. In addition, the variant cells cannot store trypsinogen or proinsulin, proteins that are targeted to dense core secretory granules in wild type cells. The regulated pathway could not be restored by transfecting with DNA encoding trypsinogen, a soluble regulated secretory protein targeted to secretory granules. A comparison of secretion from variant and wild type cells allows a distinction to be made between constitutive secretion and basal secretion, the spontaneous release of regulated proteins that occurs in the absence of stimulation.  相似文献   

20.
《The Journal of cell biology》1996,135(5):1261-1275
The proprotein convertase PC5 is encoded by multiple mRNAs, two of which give rise to the COOH-terminal variant isoforms PC5-A (915 amino acids [aa]) and PC5-B (1877 aa). To investigate the differences in biosynthesis and sorting between these two proteins, we generated stably transfected AtT-20 cell lines expressing each enzyme individually and examined their respective processing pattern and subcellular localization. Biosynthetic analyses coupled to immunofluorescence studies demonstrated that the shorter and soluble PC5-A is sorted to regulated secretory granules. In contrast, the COOH- terminally extended and membrane-bound PC5-B is located in the Golgi. The presence of a sorting signal in the COOH-terminal 38 amino acids unique to PC5-A was demonstrated by the inefficient entry into the regulated secretory pathway of a mutant lacking this segment. EM of pancreatic cells established the presence of immunoreactive PC5 in glucagon-containing granules, demonstrating the sorting of this protein to dense core secretory granules in endocrine cells. Thus, a single PC5 gene generates COOH-terminally modified isoforms with different sorting signals directing these proteins to distinct subcellular localization, thereby allowing them to process their appropriate substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号