首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host plant shifts by phytophagous insects play a key role in insect evolution and plant ecology. Such shifts often involve major behavioral changes as the insects must acquire an attraction and/or lose the repulsion to the new host plant's odor and taste. The evolution of chemotactic behavior may be due, in part, to gene expression changes in the peripheral sensory system. To test this hypothesis, we compared gene expression in the olfactory organs of Drosophila sechellia, a narrow ecological specialist that feeds on the fruit of Morinda citrifolia, with its close relatives Drosophila simulans and Drosophila melanogaster, which feed on a wide variety of decaying plant matter. Using whole-genome microarrays and quantitative polymerase chain reaction, we surveyed the entire repertoire of Drosophila odorant receptors (ORs) and odorant-binding proteins (OBPs) expressed in the antennae. We found that the evolution of OR and OBP expression was accelerated in D. sechellia compared both with the genome average in that species and with the rate of OR and OBP evolution in the other species. However, some of the gene expression changes that correlate with D. sechellia's increased sensitivity to Morinda odorants may predate its divergence from D. simulans. Interspecific divergence of olfactory gene expression cannot be fully explained by changes in the relative abundance of different sensilla as some ORs and OBPs have evolved independently of other genes expressed in the same sensilla. A number of OR and OBP genes are upregulated in D. sechellia compared with its generalist relatives. These genes include Or22a, which likely responds to a key odorant of M. citrifolia, and several genes that are yet to be characterized in detail. Increased expression of these genes in D. sechellia may have contributed to the evolution of its unique chemotactic behavior.  相似文献   

2.
Genetic analysis of hybrids between Drosophila simulans and D. sechellia shows that sexual isolation in females is caused by at least two genes, one on each major autosome, while the X chromosome has no effect. These results are similar to those of a previous study of hybrids between D. simulans and another sibling species, D. mauritiana. In this latter hybridization, each arm of the second chromosome carries genes causing sexual isolation in females, implying a total divergence of at least three loci. The genetic similarity between the D. simulans/D. mauritiana and D. simulans/D. sechellia hybridizations probably results from independent evolution and not phylogenetic artifacts, because the dominance relationships and behavioural interactions differ between the two hybridizations. The lack of an X-chromosome effect on sexual isolation contrasts with genetic studies of post-zygotic reproductive isolation, which invariably show strong effects of this chromosome.  相似文献   

3.
J. A. Coyne 《Genetics》1996,143(4):1689-1698
In seven of the eight species of the Drosophila melanogaster group, the predominant cuticular hydrocarbon of males is 7-tricosene, but in the island endemic species D. sechellia it is 6-tricosene. The phylogeny of the group implies that the novel hydrocarbon profile of D. sechellia is a derived character. Genetic analysis of hybrids between D. sechellia and its close relative D. simulans show that each of the five major chromosome arms carries at least one gene affecting the ratio of the two tricosene isomers, with the right arm of the third chromosome having the largest effect. The species difference in this character is therefore polygenic with the effects of the different chromosome arms generally additive, although there is some epistasis among third-chromosome genes. Observations of courtship by males who have been coated with foreign hydrocarbons suggest that a male's hydrocarbon profile may slightly affect the degree of sexual isolation in one of the reciprocal hybridizations between these species, but that this role is small compared to that played by hydrocarbon differences between females.  相似文献   

4.
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.  相似文献   

5.
6.
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.  相似文献   

7.
While developmentally regulated genes are generally conserved, transformer (tra), a key locus involved in the regulation of sexual differentiation, is highly diverged between species of Drosophila. With an aim to understand its divergence between sibling species, we investigated tra sequence variation among members of the Drosophila melanogaster species complex, D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In this species group, tra divergence is rapid yet clocklike and exhibits large differences in protein size. D. melanogaster contains a 13-amino acid tandem duplication, whereas D. sechellia possesses a 72-amino acid tandem duplication representing a 30% increase in total amino acid residues. We also found evidence of a nonrandom distribution of replacement substitutions and heterogeneity in substitution rates using clustering statistics and a codon substitution model. We show that tra's rapid divergence in this species complex is the result of generally lower selective constraints around regions that encode arginine-serine (RS) domains and a significantly higher rate of substitutions around the insertion site of D. sechellia's large duplication. The proximity of rapidly diverged regions to sites of nucleotide insertion suggests that higher local rates of mutation may provide a causal mechanism for TRA's rapid divergence in this subgroup. A comparison of tra orthologs across the genus Drosophila suggest that TRA maintains an assortment of RS domains for proper sex determining function while much of the protein evolves relatively unconstrained.  相似文献   

8.
L. W. Zeng  R. S. Singh 《Genetics》1993,134(1):251-260
Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. An introgression of D. sechellia Y chromosome into a fairly homogenous background of D. simulans did not show any effect of the introgressed Y on male sterility. The substitution of D. simulans Y chromosome into D. sechellia, and both reciprocal Y chromosome substitutions between D. simulans and D. mauritiana were unsuccessful. Introgressions of cytoplasm between D. simulans and D. mauritiana (or D. sechellia) also did not have any effect on hybrid male sterility. These results rule out the X-Y interaction hypothesis as a general explanation of Haldane's rule in this species group and indicate an involvement of an X-autosome interaction. Models of symmetrical and asymmetrical X-autosome interaction have been developed which explain the Y chromosome substitution results and suggest that evolution of interactions between different genetic elements in the early stages of speciation is more likely to be of an asymmetrical nature. The model of asymmetrical X-autosome interaction also predicts that different sets of interacting genes may be involved in different pairs of related species and can account for the observation that hybrid male sterility in many partially isolated species is often nonreciprocal or unidirectional.  相似文献   

9.
Olfaction in the fruit fly Drosophila melanogaster is increasingly understood, from ligand-receptor-neuron combinations to their axonal projection patterns into the antennal lobe . Drosophila thus offers an excellent opportunity to study the evolutionary and ecological dynamics of olfactory systems. We compared the structure and function of the generalist D. melanogaster with that of specialist D. sechellia, which oviposits exclusively on morinda fruit . Our analyses show that whereas the fruit's headspace was dominated by acids, antennae responded most strongly to hexanoates. D. sechellia exhibited an extraordinarily strong response to methyl hexanoate (MeHex). Behaviorally, D. sechellia was much more attracted to these morinda fruit volatiles than was D. melanogaster. The high sensitivity to MeHex was paralleled by a 2.5x-3 x overrepresentation of MeHex neurons on the antenna and a concordant 2.9 x increase in volume of the corresponding glomerulus as compared to D. melanogaster. In addition, the MeHex neuron exhibited an extreme sensitivity down to femtograms of its ligand. In contrast, no peripherally mediated shift was found paralleling D. sechellia's increased attraction to acids. These findings are a demonstration of evolution acting at several levels in the olfactory circuitry in mediating a fruit fly's unique preference for fruit toxic to its sibling species .  相似文献   

10.
两个玉米矮花叶病显性互补抗病基因的发现和定位   总被引:20,自引:0,他引:20  
吴建宇  丁俊强  杜彦修  陈伟程 《遗传学报》2002,29(12):1095-1099
玉米矮花叶病是世界普通发生危害严重的玉米病毒病害之一,迄今为止,只有少数几个抗病基因被发现并定位,优良自交系四一是鉴定出定的玉米筹花叶病新抗源,它表现为全生育抗性,通过连续两年的经典遗传学研究发现,四一的成株期抗性表现为一种新的抗病遗传模式,该抗性是由两个显性互补抗病基因控制,87对微卫星标记分析进一步证实了以上推论,并把两个抗病基因分别定位在第三和第六染色体上,第三染色体上的抗病基因与微卫星标记phi029相距14.5cM,第六染色体上的抗病基因与微卫星标记phil26相距7.2cM.  相似文献   

11.
J. A. Coyne 《Genetics》1996,143(1):353-364
Females of Drosophila melanogaster and its sibling species D. simulans have very different cuticular hydrocarbons, with the former bearing predominantly 7,11-heptacosadiene and the latter 7-tricosene. This difference contributes to reproductive isolation between the species. Genetic analysis shows that this difference maps to only the third chromosome, with the other three chromosomes having no apparent effect. The D. simulans alleles on the left arm of chromosome 3 are largely recessive, allowing us to search for the relevant regions using D. melanogaster deficiencies. At least four nonoverlapping regions of this arm have large effects on the hydrocarbon profile, implying that several genes on this arm are responsible for the species difference. Because the right arm of chromosome 3 also affects the hydrocarbon profile, a minimum of five genes appear to be involved. The large effect of the thrid chromosome on hydrocarbons has also been reported in the hybridization between D. simulans and its closer relative D. sechellia, implying either an evolutionary convergence or the retention in D. sechellia of an ancestral sexual dimorphism.  相似文献   

12.
Jones CD 《Heredity》2004,92(3):235-241
Drosophila sechellia, an island endemic that specializes on a single host plant, has a lower rate of egg production than its generalist sister species D. melanogaster, D. simulans, and D. mauritiana. Earlier work showed that part of this difference in egg production was due to a reduction in the number of ovarioles in D. sechellia relative to its sister species. Here, I extend this earlier work by genetically analyzing the difference in egg production between D. sechellia and D. simulans. In all, 10 genetic markers were used in several interspecific backcrosses to identify chromosome regions that affected the rate of egg production. While previously mapped factors affecting ovariole number appear to impact the rate of egg production, new, non-ovariole factors were also identified. Overall, the difference in egg production between D. sechellia and D. simulans appears to be a polygenic trait. The relationship between these factors and genes involved the adaptation of D. sechellia to its host plant is not yet clear. The data are consistent with the hypothesis that decline in egg production is, in part, a negative pleiotropic effect of genetic changes required for host specialization in D. sechellia, although finer-scale genetic analysis of both traits is needed to truly test this hypothesis.  相似文献   

13.
D R Houpt  J C Pursey  R A Morton 《Génome》1988,30(6):844-853
The chromosomal locations of several genes responsible for increased malathion resistance in a laboratory-selected population of Drosophila melanogaster have been determined. These genes appear to be involved in the regulation of microsomal cytochrome P-450. A major gene on chromosome 2 (2-64) and at least two genes on chromosome 3 (near 3-58) control increased mixed function oxidase activity, and both larval and adult malathion resistance. Although the chromosome 2 locus was not associated with a significant increase in cytochrome P-450 content, SDS polyacrylamide gel electrophoresis of microsomal proteins detected increased silver staining of a polypeptide having a relative molecular mass (Mr) of about 52,000. Microsomes from strains carrying the chromosome 3 factors for resistance contained more cytochrome P-450 and increased amounts of two heme-staining protein bands (Mr = 50,000 and 54,000). The genes regulating these proteins were closely linked to striped at 3-62 and probably identical to the loci responsible for malathion resistance and increased mixed function oxidase activity. Other R genes on both chromosomes 2 and 3 as well as target resistance were required for the full expression of malathion resistance in the selected Drosophila population. Exposure of this Drosophila melanogaster population to malathion selected a polygenic system for the oxidative metabolism of insecticide.  相似文献   

14.
15.
The underlying genetic basis of adaptive phenotypic changes is generally poorly understood, yet a growing number of case studies are beginning to shed light on important questions about the molecular nature and pleiotropy of such changes. We use Drosophila sechellia, a dietary specialist fruit fly that evolved to specialize on a single toxic host plant, Morinda citrifolia, as a model for adaptive phenotypic change and seek to determine the genetic basis of traits associated with host specialization in this species. The fruit of M. citrifolia is toxic to other drosophilids, primarily due to high levels of the defense chemical octanoic acid (OA), yet D. sechellia has evolved resistance to OA. Our prior work identified three Osiris family genes that reside in a fine‐mapped QTL for OA resistance: Osiris 6 (Osi6), Osi7, and Osi8, which can alter OA resistance in adult D. melanogaster when knocked down with RNA interference suggesting they may contribute to OA resistance in D. sechellia. Genetic mapping identified overlapping genomic regions involved in larval and adult OA resistance in D. sechellia, yet it remains unknown whether Osiris genes contribute to resistance in both life stages. Furthermore, because multiple genomic regions contribute to OA resistance, we aim to identify other gene(s) involved in this adaptation. Here, we identify candidate larval OA resistance genes using RNA sequencing to measure genome‐wide differential gene expression in D. sechellia larvae after exposure to OA and functionally test identified genes for a role in OA resistance. We then test the Osiris genes previously shown to alter adult OA resistance for effects on OA resistance in larvae. We found that Osi8 knockdown decreased OA resistance in D. melanogaster larvae. These data suggest that evolved changes in Osi8 could impact OA resistance in multiple life stages while Osi6 and Osi7 may only impact adult resistance to OA.  相似文献   

16.
17.
Cattani MV  Presgraves DC 《Genetics》2012,191(2):549-559
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.  相似文献   

18.
We attempted to introgress Y chromosomes between three sibling species of Drosophila: D. simulans, D. sechellia and D. mauritiana. Four D. sechellia Y chromosomes were introgressed into D. simulans without loss of fertility whereas the four reciprocal introgressions (D. simulans Y introgressed into D. sechellia) all result in sterility. Both reciprocal Y introgressions of D. simulans and D. mauritiana (four of each) also result in sterility. Compared with D. simulans males, the males with the D. sechellia Y chromosome in D. simulans background had lower productivity but only after multiple matings with virgin females. These males also were inferior compared with pure species males in sperm displacement and/or remating ability. The two different Y genotype males, however, were comparable in viability, longevity and mating success in female choice tests. We also use our results to estimate the effective number of autosomal loci interacting with X-linked genes to produce hybrid male sterility.  相似文献   

19.
Four sibling species from the melanogaster subgroup (Drosophila melanogaster, D. simulans, D. sechellia, and D. mauritiana) were studied for genetic divergence, by high-resolution two-dimensional protein electrophoresis (2DE) coupled with ultrasensitive silver staining. A total of eight tissues from larval and adult developmental stages representing both gonadal (germ-line) and nongonadal (somatic) tissues were analyzed for protein divergence between species. Close to 400 polypeptides (protein spots) were scored from each tissue and species, and protein divergence was measured on the basis of qualitative differences (presence/absence) of protein spots in pairwise species comparisons. The observed levels of genic divergence varied among tissues and among species. When larval hemolymph proteins (which are known to be highly polymorphic) were excluded, there was no evidence to suggest that either the larval or adult-stage proteins, as a whole, are more diverged than the other; variation between different tissues rather than between developmental stages appears to be the most significant factor affecting genetic divergence between species. The reproductive tissue (testis and accessory gland) showed more divergence than did the nonreproductive tissue; D. melanogaster testis (from both larvae and adult males) showed the highest level of divergence. In view of the previous observation that D. simulans, D. mauritiana, and D. sechellia show similar but significantly less reproductive isolation from each other than from D. melanogaster, the present results suggest a correlation between the levels of reproductive-tract-protein divergence and the degree of reproductive isolation in these species.  相似文献   

20.
The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号