首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corticotropin-releasing factor (CRF) and the urocortins (UCNs) are structurally and pharmacologically related neuropeptides which regulate the endocrine, autonomic, emotional and behavioral responses to stress. CRF and UCN1 activate both CRF receptors (CRFR1 and CRFR2) with CRF binding preferentially to CRFR1 and UCN1 binding equipotently to both receptors. UCN2 and UCN3 activate selectively CRFR2. Previously an in vitro study demonstrated that superfusion of both CRF and UCN1 elevated the GABA release elicited by electrical stimulation from rat amygdala, through activation of CRF1 receptors. In the present experiments, the same in vitro settings were used to study the actions of CRF and the urocortins on hypothalamic GABA release. CRF and UCN1 administered in equimolar doses increased significantly the GABA release induced by electrical stimulation from rat hypothalamus. The increasing effects of CRF and UCN1 were inhibited considerably by the selective CRFR1 antagonist antalarmin, but were not influenced by the selective CRFR2 antagonist astressin 2B. UCN2 and UCN3 were ineffective. We conclude that CRF1 receptor agonists induce the release of GABA in the hypothalamus as well as previously the amygdala. We speculate that CRF-induced GABA release may act as a double-edged sword: amygdalar GABA may disinhibit the hypothalamic CRF release, leading to activation of the hypothalamic-pituitary-adrenal axis, whereas hypothalamic GABA may inhibit the hypothalamic CRF release, terminating this activation.  相似文献   

2.
C M Turkelson 《Life sciences》1988,43(15):1199-1205
The release of immunoreactive corticotropin-releasing factor (I-CRF) was studied in vitro using a hypothalamic superfusion system. Omission of calcium, or inclusion of ATP synthesis inhibitors in the medium significantly reduced the rates of basal and K+-induced I-CRF release. Reducing the incubation temperature of the hypothalami to 4 degrees C caused a reversible inhibition of basal I-CRF release. I-CRF release was stimulated in a dose-dependent fashion by 8-bromo c-AMP. Those results suggest that the in vitro release of CRF is energy-dependent and may involve a calcium and c-AMP-mediated mechanism.  相似文献   

3.
Acute effects of Ace, Meth and IL-1 on AChE activity, ACh and CRF mRNA levels in, and CRF-release from the hypothalamus were studied in vitro. The hypothalamus samples were dissected from the rat brain and were incubated in vitro with IL-1, Ace or Meth in the presence or absence of Dex, Atrop, PTL, PROP and GABA. Ace and Meth, but not IL-1, inhibited AChE activity, while all three compounds; (1) increased ACh and CRF mRNA levels in and CRF release from; (2) activated the CRE promoter region of CRF-gene in: and (3) increased cFos binding to the AP-1 region of the CRF-gene in the hypothalamus. Dex suppressed the effects of IL-1, possibly by inducing the nGRE regulatory sites of the CRF-gene. Dex, however, did not modulate the effects of Ace and Meth on the hypothalamus, which may be attributed to the failure of Dex to modulate the CRF-gene's nGRE regulatory sites. Atrop caused 80-90% inhibition of the effects of IL-1, but caused only 50-65% inhibition of the effects of Ace or Meth on CRF mRNA levels in and CRF release from the hypothalamus. PTL did not affect, while PROP slightly attenuated the effects of IL-1 and the insecticides on the hypothalamus. GABA attenuated the effects of the insecticides but not the effects of IL-1 on the hypothalamus. This suggests that the IL-1-induced augmentation of CRF synthesis in and release from the hypothalamus is mediated through a cholinergic pathway, while the insecticide-induced augmentation of CRF synthesis in and release from the hypothalamus is mediated through the cholinergic and GABAergic pathways. The insecticides, but not IL-1, disrupt feedback regulation of CRF synthesis in and release from the hypothalamus.  相似文献   

4.
5.
J Fryer  K Lederis  J Rivier 《Peptides》1984,5(5):925-930
The structurally homologous peptides urotensin I, ovine CRF and sauvagine stimulate the release of immunoreactive ACTH from a superfused dispersed goldfish anterior pituitary cell column. The addition of cortisol to the superfusion buffer resulted, following a latent period, in a decrease in basal release of ACTH from the pituitary cell column and a diminution in the ACTH-releasing activities of urotensin I, CRF and sauvagine. The removal of cortisol from the superfusion buffer resulted in a slow recovery of basal ACTH release and a recovery of the ACTH-releasing activities of urotensin I, CRF and sauvagine. These results are supportive of the view that urotensin I, or a urotensin I-like peptide, serves as a physiological regulator of ACTH release in teleost fishes.  相似文献   

6.
The members of the CRF peptide family, corticotropin-releasing factor (CRF), urocortin I (Ucn I), urocortin II (Ucn II) and urocortin III (Ucn III) coordinate endocrine and behavioral responses to stress. CRF has also been demonstrated to stimulate dopamine (DA) synthesis.In our study, a superfusion system was used to investigate the effects of this peptide family on striatal DA release following electrical stimulation. The involvement of the CRF receptors was studied by pretreatment of rat striatal slices with selective CRF antagonists. CRF and Ucn I increased the release of [3H]DA while Ucn II and Ucn III were ineffective. The CRFR1 antagonist antalarmin inhibited the [3H]DA release induced by electrical stimulation and enhanced by CRF and Ucn I. The CRFR2 antagonist astressin-2B was ineffective.These results suggest that CRF and Ucn I mediate DA release through the activation of CRFR1. Ucn II and Ucn III are not involved in this process.Special Issue Dedicated to Miklós Palkovits.  相似文献   

7.
Chen XQ  Du JZ  Wang YS 《Regulatory peptides》2004,119(3):221-228
Corticotropin-releasing factor (CRF) peptide release was activated by hypoxia in the rat hypothalamus. The mechanisms, however, of the hypoxia-induced CRF release remains unclear. In this study, we demonstrated that the norepinephrine (NE) and its receptors in the paraventricular nucleus (PVN) mediated the CRF release in a simulated altitude hypoxia. When rats were exposed to 5 or 7 km altitude of hypoxia for a short or long term: (1) NE levels in the PVN and the CeA, using the HPLC analysis, were intensity and time course dependently increased, but the increase in the PVN were potential than in the CeA. Restraint-induced NE increase was much higher in both the PVN and the CeA, compared with hypoxia-induced response. (2) Hypoxia and restraint significantly enhanced CRF release in the ME and the PVN but not in the CeA, through RIA assay, which result in stimulating corticosterone secretion. (3) Hypoxia-induced CRF release was reversed by an injection of prazosin (i.c.v.), an alpha-1 adrenoceptor antagonist, while administration of yohimbine (i.c.v.), an alpha-2 receptor antagonist, facilitated further CRF release. These data suggested that hypoxia induced NE activation centrally, via alpha-1 and -2 receptors, leading to improving hypothalamic CRF release, which in turn stimulated pituitary and adrenal cortex. Restraint presented much potential action on NE activation than hypoxia.  相似文献   

8.
An experimental system allowing both the incubation and rapid transfert of rat hypothalamic slices has been developed in order to approach the regulation of CRF secretion. The release of CRF has been quantified by a specific radioimmunoassay. Under basal conditions, immunoreactive CRF release reached an optimum of 96.2 +/- 10.4 pg/3 hypothalami/20 min. A depolarizing concentration of KCl (56 mM) or veratridine (50 microM) applied for 20 min. induced a 222 and 257% increase, respectively, in CRF release. The in vitro CRF values released under basal and stimulated conditions are comparable to those of other hypothalamic neuropeptides. Furthermore, in vitro CRF release from the hypothalamus is in the same order of magnitude as in vivo CRF secretion estimated by hypophysial portal blood collection or median eminence push-pull cannulation.  相似文献   

9.
Effects of acetylcholine (Ach) and gamma-aminobutyric acid (GABA) on immunoreactive corticotropin-releasing factor (CRF) release from the rat hypothalamus were examined using a rat hypothalamic perifusion system and a rat CRF RIA in vitro. Ach stimulated CRF release in a dose-dependent manner (1 pM-1 nM). One nM Ach-induced CRF release was inhibited by atropine in a dose-dependent manner (1-100 nM), but was inhibited by only a high concentration (100 nM) of hexamethonium. In addition, such Ach-induced CRF release was inhibited by norepinephrine. GABA did not influence basal CRF release. These results suggest that Ach stimulates CRF release mainly through muscarinic receptors at least under our conditions.  相似文献   

10.
The hypothalamic regulation of ACTH secretion has been reviewed. Recent biochemical investigations on corticotropin-releasing factor (CRF) suggest that CRF is present in the hypothalamus under two or more different molecular weight forms, their structure being not elucidated yet. Vasopressin has a CRF-like activity. However, contradictory results have been reported on the role of AVP as a physiological CRF. The synthesis of CRF appears to occur in a large hypothalamic area outside the median eminence. CRF-carrying fibers are thought to pass through the lateral retrochiasmatic area and project on the hypophysial portal vessels at the junction between the pituitary stalk and the median eminence. Conflicting data have been published on the influence of monoamines on ACTH secretion. In the dog, ACTH release is inhibited by the alpha-adrenergic receptors, this effect being not as clearly demonstrated in other species. The stimulation of nicotinic and muscarinic receptors followed by increased ACTH secretion. Glucocorticoids appear to lower ACTH secretion through an action at both the hypothalamic and pituitary levels.  相似文献   

11.
12.
13.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

14.
To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.  相似文献   

15.
Interleukin-1 (IL-1) is a potent hypothalamic-pituitary-adrenal (H-P-A) axis activator. The hypothalamus is considered one of the main sites of action of IL-1 on the H-P-A axis, inducing CRF secretion, which is modulated by glucocorticoids. Glucocorticoids, which modulate CRF release by a negative feedback inhibition, have been postulated to exert a permissive action on the IL-1 effect on CRF secretion. Using a continuous perifusion system of rat hypothalami, the results of the present study indicate that at the same concentrations, IL-1 beta exerted a more potent effect than IL-1 alpha stimulating CRF secretion. The increase in hypothalamic CRF release induced by IL-1 was rapidly inhibited by both dexamethasone and corticosterone. However, adrenalectomy 2 or 8 days before did not modify CRF secretion induced by IL-1 from the in vitro perifused hypothalami. These data indicate that IL-1 does not seem to induce CRF secretion by interfering with an impeding action of glucocorticoids, although the cytokine effect is negatively modulated by corticosteroids.  相似文献   

16.
The effects of various osmotic agents on the release of oxytocin were examined in a superfusion system. Oxytocin was released significantly from the rat pituitary by superfusion with medium of an osmolality of 350 mOsm/kg H2O adjusted with NaCl, regardless of the presence of the rat hypothalamus. Media adjusted to an osmolality of 350 mOsm/kg H2O with sucrose, glucose, urea or mannitol had no effect on oxytocin release from the hypothalamo-pituitary complex. Medium containing excess Na2SO4 induced significant release of oxytocin from the pituitary without the hypothalamus. The administration of tetraethylammonium chloride had no oxytocin secretion. These data suggest that oxytocin release from the pituitary is influenced by the level of sodium ion rather than the osmotic pressure.  相似文献   

17.
Wistar male rats were implanted with bipolar electrodes in the lateral hypothalamus to study self-stimulation reaction in the Skinner box. Simultaneously, the microcanules were implanted into the central nucleus of the amygdala to inject the drugs studied (1 microl in volume for each injection). The blockade of CRF receptors (astressin 1 microg) or sodium influx ionic currents (xycaine, or lidocain 1 microg) by means of intrastructural administration of drugs into the amygdala descreased self-stimulation reaction of the lateral hypothalamus in rats by 29-55%. The inhibition of D2 and D2 dopamine receptors in the amygdala with SCH23390 (1 microg) or sulpiride (1 microg), respectively. reduced self-stimulation too, but in less degree. On the background of blockade of CRF (astressin) and dopamine (sulpiride) receptors, as well as sodium influx ionic currents (lidocain) in the amygdala neurons, psychomotor stimulant amphetamine (1 mg/kg) and barbiturate sodium ethaminal (5 mg/kg) supported their psychoactivating effect on self-stimulation (+30-37%), but fentanyl (0.1 mg/kg) had got no effect. Fentanyl activated self-stimulation moderately only after blockade D1 dopamine receptors with SCH23390. After blockade of CRF receptors, leu-enkephaline strengthened its depressant effect on self-stimulation reaction (-89%). Therefore, if the modulating influence of the amygdala on the hypothalamus is diminished, the reinforcing effects of opiated (fentanyl) and opioids (leuencephaline) will block, but there will be no effect for psychomotor stimulant amphetamine and barbiturate sodium ethaminal.  相似文献   

18.
Increasing evidence supports a neurotransmitter or a neuromodulator action for peptides derived from proopiomelanocortin in the hypothalamus. Peptide release involves sodium, potassium and calcium ion channels and is dependent on the presence of extracellular calcium ions at the time of depolarisation of neuronal membranes. Dopaminergic and gamma-aminobutyric acid-containing neuronal systems inhibit POMC-derived peptide release from the hypothalamus through D2-dopamine and GABAA receptors, respectively. Serotoninergic mechanisms exert a biphasic effect on peptide release being directly stimulatory at low concentrations of serotonin and indirectly inhibitory at higher concentrations via interactions with the endogenous dopaminergic system. Cholinergic and glutamergic drugs stimulate peptide release through nicotinic and N-methyl-D-aspartate receptors, respectively. Finally, circulating steroids regulate the hypothalamic POMC system with testosterone stimulating POMC gene expression whilst oestradiol and glucocorticoids induce an inhibitory control.  相似文献   

19.
[3H]Adrenaline ([3H]ADR, 40 nM) was accumulated by rat hypothalamic synaptosomes (P2) more rapidly and in significantly greater amounts than by similar preparations from cerebral cortex. There was no significant difference between these two tissues in the rate or amount of [3H]noradrenaline ([3H]NA, 40 nM) accumulation. Talusupram (10 microM), maximally inhibited the uptake of [3H]ADR into hypothalamic synaptosomes by 60%. Nomifensine further inhibited uptake by 14%. From these observations it was concluded that some [3H]ADR was accumulated into non adrenergic neuronal terminals. The effects of desipramine (DMI, 10 mg/kg/day and clorgyline (1 mg/kg/day) administration for 28 days on K+-evoked release of [3H]ADR was investigated using superfused hypothalamic synaptosomes. After both chronic antidepressant drug regimens, total [3H]ADR release (spontaneous + evoked) was significantly reduced. Evoked release of [3H]ADR (by KCl, 16 mM) was significantly reduced after the DMI but not the clorgyline regimens. Presynaptic alpha 2-adrenoceptor function in the hypothalamus was assessed during superfusion by measuring the reduction in K+-evoked release of [3H]ADR caused by clonidine (1 microM). The attenuating effects of clonidine on [3H]ADR release (42% in untreated controls and 36% after chronic clorgyline) was diminished (to 4%) after chronic DMI administration. Alpha 2 adrenoceptor numbers in the rat hypothalamus were not significantly changed after clorgyline or DMI administration, suggesting that the functional subsensitivity seen in synaptosomes after DMI, may not be related to alpha 2 adrenoceptor down regulation.  相似文献   

20.
The role of alpha-adrenoceptors in the mediation of autonomic function, particularly in the control of the cardiovascular system, is widely known. However, alpha-adrenoceptors are also important in the regulation of a variety of metabolic processes that occur in the body either through direct action or by stimulation of the release of other mediators that control metabolic function. Thus, alpha 2-adrenoceptor activation by circulating or neuronally released catecholamines inhibits the release of insulin from pancreatic islet beta-cells and, by inhibiting this response, alpha 2-adrenoceptor antagonists have been shown to have an antihyperglycemic effect. The alpha-adrenoceptor-mediated regulation of the release of pituitary hormones is indirect, with alpha-adrenoceptors being located on peptidergic neurons in the hypothalamus that secrete releasing hormones into the hypophysial portal system to regulate the secretion of hormones from the anterior pituitary gland. Thus, the increase in cortisol secretion from the adrenal glands following a meal is produced, at least in part, by an alpha 1-adrenoceptor-mediated increase in vasopressin and CRF-41 secretion from neurons on the hypothalamus that stimulate the release of adrenocorticotrophic hormone secretion from the pituitary gland, which subsequently stimulates the synthesis and release of cortisol from the adrenal medulla. In addition to metabolic regulation by alpha 1- and alpha 2-adrenoceptors within the endocrine system, alpha-adrenoceptors are also a component of the system that regulates certain aspects of metabolism within autonomic effector cells, such as the control of smooth muscle cell division and growth during periods of continued alpha-adrenoceptor activation as a result of activation of second messenger systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号