首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free‐living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free‐living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV‐infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)‐specific antibody concentrations. NAbs titers were higher in LPAIV‐infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV‐infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV‐infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free‐living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host.  相似文献   

2.
ABSTRACT: BACKGROUND: Avian influenza virus (AIV) outbreaks are worldwide threats to both poultry and humans. Our previous study suggested microRNAs (miRNAs) play significant roles in the regulation of host response to AIV infection in layer chickens. The objective of this study was to test the hypothesis if genetic background play essential role in the miRNA regulation of AIV infection in chickens and if miRNAs that were differentially expressed in layer with AIV infection would be modulated the same way in broiler chickens. Furthermore, by integrating with parallel mRNA expression profiling, potential molecular mechanisms of host response to AIV infection can be further exploited. RESULTS: Total RNA isolated from the lungs of non-infected and low pathogenic H5N3 infected broilers at four days post-infection were used for both miRNA deep sequencing and mRNA microarray analyses. A total of 2.6M and 3.3M filtered high quality reads were obtained from infected and non-infected chickens by Solexa GA-I Sequencer, respectively. A total of 271 miRNAs in miRBase 16.0 were identified and one potential novel miRNA was discovered. There were 121 miRNAs differentially expressed at the 5% false discovery rate by Fisher's exact test. More miRNAs were highly expressed in infected lungs (108) than in non-infected lungs (13), which was opposite to the findings in layer chickens. This result suggested that a different regulatory mechanism of host response to AIV infection mediated by miRNAs might exist in broiler chickens. Analysis using the chicken 44K Agilent microarray indicated that 508 mRNAs (347 down-regulated) were differentially expressed following AIV infection. CONCLUSION: A comprehensive analysis combining both miRNA and targeted mRNA gene expression suggests that gga-miR-34a, 122-1, 122-2, 146a, 155, 206, 1719, 1594, 1599 and 451, and MX1, IL-8, IRF-7, TNFRS19 are strong candidate miRNAs or genes involved in regulating the host response to AIV infection in the lungs of broiler chickens. Further miRNA or gene specific knock-down assay is warranted to elucidate underlying mechanism of AIV infection regulation in the chicken.  相似文献   

3.
To gain insight into avian influenza virus (AIV) transmission, exposure, and maintenance patterns in shorebirds at Delaware Bay during spring migration, we examined temporal AIV prevalence trends in four Charadriiformes species with the use of serial cross-sectional data from 2000 through 2008 and generalized linear and additive models. Prevalence of AIV in Ruddy Turnstones (Arenaria interpres morinella) increased after arrival, peaked in mid-late May, and decreased prior to departure. Antibody prevalence also increased over this period; together, these results suggested local infection and recovery prior to departure. Red Knots (Calidris canutus rufa), Sanderlings (Calidris alba), and Laughing Gulls (Leucophaeus atricilla) were rarely infected, but dynamic changes in antibody prevalence differed among species. In Red Knots, declining antibody prevalence over the stopover period suggested AIV exposure prior to arrival at Delaware Bay with limited infection at this site. Antibody prevalence was consistently high in Laughing Gulls and low in Sanderlings. Both viral prevalence and antibody prevalence in Sanderlings varied directly with those in turnstones, suggesting virus spillover to Sanderlings. Results indicate that, although hundreds of thousands of birds concentrate at Delaware Bay during spring, dynamics of AIV infection differ among species, perhaps due to differences in susceptibility, potential for contact with AIV at this site, or prior exposure. Additionally, Ruddy Turnstones possibly act as a local AIV amplifying host rather than a reservoir.  相似文献   

4.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

5.
Recent outbreaks of highly pathogenic avian influenza virus (AIV) in birds, humans and other mammalian species calls for a better understanding of virus dynamics in wild bird species and populations that act as maintenance hosts. Host ecology influences the transmission of pathogens and can be used to explore and infer pathogen dynamics. Most of the ecological processes proposed to explain AIV transmission in wild birds have been derived from studies conducted in the temperate and boreal regions of the northern hemisphere. We evaluate the role of two key drivers of AIV dynamics in a waterfowl community in Zimbabwe (southern Africa): (1) the recruitment of young birds and (2) the seasonal aggregation of birds. We analyse the seasonal variation of AIV prevalence in waterfowl and overlay these data with the phenology of reproduction and the seasonal variation in the local abundance of these species. We find that the breeding period of southern Afrotropical waterfowl species is more extended and somewhat less synchronized among species in the community than is the case in temperate and boreal waterfowl communities. Young birds are recorded at most times of the year, and these immunologically naïve individuals can therefore act as new hosts for AIV throughout the year within the wild bird population. Although host aggregation peaks in the cold‐dry to hot‐dry season, birds still aggregate throughout the year and this potentially spreads the opportunities for first infection of juveniles and other naïve birds temporally. We did not find a relationship between season, AIV prevalence in waterfowl, the influx of juveniles or the gradual aggregation of birds during the dry season. Therefore, the main drivers of AIV dynamics (juvenile influx and host abundance/aggregation), although present in Afrotropical regions, could not explain the AIV seasonal patterns in our study in contrast to results reported from temperate and boreal regions. These differences imply variation in the risk of AIV circulation in waterfowl and in the risk of spread to poultry, other animals or humans.  相似文献   

6.
研究LY株禽呼肠孤病毒(ARV)感染1日龄SPF鸡后对法氏囊发育影响,对传染性法氏囊病毒(IBDV)、禽流感病毒(AIV)、新城疫病毒(NDV)疫苗免疫诱发的抗体的影响,及对强毒株IBDV致病作用的影响。结果表明,LY株ARV感染1日龄SPF鸡可引起法氏囊萎缩和部分淋巴细胞减少,但对增重及AIV和NDV疫苗免疫后抗体滴度却没有显著影响。ARV感染可降低弱毒IBDV疫苗免疫后的抗体反应,但对随后IBDV强毒株攻毒的抵抗力却与对照鸡无显著差异。经IBDV弱毒疫苗免疫后,再接种强毒株IBDV,不会引起死亡,但却仍能显著抑制对AIV、NDV疫苗免疫后的抗体滴度。然而,对于1~7日龄经ARV感染的鸡,IBDV强毒的这种免疫抑制作用又显著低于未经ARV感染的对照鸡。  相似文献   

7.
Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards.  相似文献   

8.
We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics.  相似文献   

9.
Sublethal effects of parasitic infection, such as reductions in reproductive rate, can significantly affect host population dynamics. Here we show that in wild populations of both Clethrionomys glareolus (bank vole) and Apodemus sylvaticus (wood mouse), females infected with cowpox virus are likely to delay maturation and therefore reproduction – in most cases until the following breeding season. Some infected bank voles do mature in their year of birth but still take longer than uninfected females. Together with our previous demonstration that individuals infected with cowpox virus in the summer survive better than uninfected individuals, these results support the prediction that hosts that develop an acute infection may best optimise their fitness by decreasing current reproduction to maximise the probability of surviving infection. Moreover, as the proportion of individuals infected increases with density, the reduction in host fecundity may have significant consequences for host dynamics.  相似文献   

10.
1.?Investigating the ecological context in which host-parasite interactions occur and the roles of biotic and abiotic factors in forcing infection dynamics is essential to understanding disease transmission, spread and maintenance. 2.?Despite their prominence as model host-pathogen systems, the relative influence of environmental heterogeneity and host characteristics in influencing the infection dynamics of avian blood parasites has rarely been assessed in the wild, particularly at a within-population scale. 3.?We used a novel multievent modelling framework (an extension of multistate mark-recapture modelling) that allows for uncertainty in disease state, to estimate transmission parameters and assess variation in the infection dynamics of avian malaria in a large, longitudinally sampled data set of breeding blue tits infected with two divergent species of Plasmodium parasites. 4.?We found striking temporal and spatial heterogeneity in the disease incidence rate and the likelihood of recovery within this single population and demonstrate marked differences in the relative influence of environmental and host factors in forcing the infection dynamics of the two Plasmodium species. 5.?Proximity to a permanent water source greatly influenced the transmission rates of P.?circumflexum, but not of P.?relictum, suggesting that these parasites are transmitted by different vectors. 6.?Host characteristics (age/sex) were found to influence infection rates but not recovery rates, and their influence on infection rates was also dependent on parasite species: P.?relictum infection rates varied with host age, whilst P.?circumflexum infection rates varied with host sex. 7.?Our analyses reveal that transmission of endemic avian malaria is a result of complex interactions between biotic and abiotic components that can operate on small spatial scales and demonstrate that knowledge of the drivers of spatial and temporal heterogeneity in disease transmission will be crucial for developing accurate epidemiological models and a thorough understanding of the evolutionary implications of pathogens.  相似文献   

11.
The rapid geographic spread of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) across the United States has stimulated interest in comparative host infection studies to delineate competent avian hosts critical for viral amplification. We compared the host competence of four taxonomically related blackbird species (Icteridae) after experimental infection with WNV and with two endemic, mosquito-borne encephalitis viruses, western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), and St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). We predicted differences in disease resistance among the blackbird species based on differences in life history, because they differ in geographic range and life history traits that include mating and breeding systems. Differences were observed among the response of these hosts to all three viruses. Red-winged Blackbirds were more susceptible to SLEV than Brewer's Blackbirds, whereas Brewer's Blackbirds were more susceptible to WEEV than Red-winged Blackbirds. In response to WNV infection, cowbirds showed the lowest mean viremias, cleared their infections faster, and showed lower antibody levels than concurrently infected species. Brown-headed Cowbirds also exhibited significantly lower viremia responses after infection with SLEV and WEEV as well as coinfection with WEEV and WNV than concurrently infected icterids. We concluded that cowbirds may be more resistant to infection to both native and introduced viruses because they experience heightened exposure to a variety of pathogens of parenting birds during the course of their parasitic life style.  相似文献   

12.
Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias α2,3 versus α2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia α2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia α2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans.  相似文献   

13.
丁天波  周雪  杨楠  杨炀  唐瑶  褚栋 《昆虫学报》2021,64(3):384-391
[目的]本研究以番茄褪绿病毒(tomato chlorosis virus,ToCV)和番茄黄化曲叶病毒(tomato yellow leaf curl virus,TYLCV)为主体,旨在明确ToCV单独侵染及TYLCV&ToCV复合侵染对烟粉虱Bemisia tabaci MED隐种寄主适应性的影响,并从寄主植物营...  相似文献   

14.
Pathogens may be important for host population dynamics, as they can be a proximate cause of morbidity and mortality. Infection dynamics, in turn, may be dependent on the underlying condition of hosts. There is a clear potential for synergy between infection and condition: poor condition predisposes to host infections, which further reduce condition and so on. To provide empirical data that support this notion, we measured haematological indicators of infection (neutrophils and monocytes) and condition (red blood cells (RBCs) and lymphocytes) in field voles from three populations sampled monthly for 2 years. Mixed-effect models were developed to evaluate two hypotheses, (i) that individuals with low lymphocyte and/or RBC levels are more prone to show elevated haematological indicators of infection when re-sampled four weeks later, and (ii) that a decline in indicators of condition is likely to follow the development of monocytosis or neutrophilia. We found that individuals with low RBC and lymphocyte counts had increased probabilities of developing monocytosis and higher increments in neutrophils, and that high indices of infection (neutrophilia and monocytosis) were generally followed by a declining tendency in the indicators of condition (RBCs and lymphocytes). The vicious circle that these results describe suggests that while pathogens overall may be more important in wildlife dynamics than has previously been appreciated, specific pathogens are likely to play their part as elements of an interactive web rather than independent entities.  相似文献   

15.
A gap remains in our understanding of how host‐specific fungal pathogens impact negative density dependence (NDD). Here, we investigated survival of Cinnamomum subavenium Miq. seedlings, the dominant canopy species in a seasonal tropical evergreen forest, Thailand. It is infected by a host‐specific fungus that is easily identifiable in the field. We quantified the effects of conspecific seedling and adult density on fungal infection and seedling survival over a wide range of environmental heterogeneity in elevation, understory vegetation and presence of forest gaps. Generalized linear mixed models (GLMMs) for seedling survival revealed that fungal infection significantly reduced survival and had the strongest effect on seedling survival as compared with conspecific density and environmental heterogeneity. Adult conspecific density was not, however, significantly correlated with the probability of infection, and conspecific seedling density was positively associated with increased infection only at high elevations. In contrast to infection, we found a significant positive correlation between conspecific seedling density and the probability of seedling survival. Consequently, our results demonstrate that fungal infection can have major impacts on seedling survival, but not in a manner consistent with local NDD effects on seedlings, as assumed in the Janzen–Connell hypothesis. Our study provides an example of how quantifying the interaction between environmental heterogeneity and a host‐specific plant‐pathogen can yield unexpected insights into the dynamics of seedling populations. The combined effects of host‐specific pathogens and environmental heterogeneity on survival of dominant seedling species may ultimately provide a chance for rarer species to recruit.  相似文献   

16.
For pathogens transmitted by biting vectors, one of the fundamental assumptions is often that vector bites are the sole or main route of host infection. Here, we demonstrate experimentally a transmission route whereby hosts (red grouse, Lagopus lagopus scoticus) became infected with a member of the tick-borne encephalitis virus complex, louping ill virus, after eating the infected tick vector. Furthermore, we estimated from field observations that this mode of infection could account for 73-98% of all virus infections in wild red grouse in their first season. This has potential implications for the understanding of other biting vector-borne pathogens where hosts may ingest vectors through foraging or grooming.  相似文献   

17.
Quantifying the variation of pathogens’ life history traits in multiple host systems is crucial to understand their transmission dynamics. It is particularly important for arthropod-borne viruses (arboviruses), which are prone to infecting several species of vertebrate hosts. Here, we focus on how host-pathogen interactions determine the ability of host species to transmit a virus to susceptible vectors upon a potentially infectious contact. Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease, chosen as a case study. The relative contributions of livestock species to RVFV transmission has not been previously quantified. To estimate their potential to transmit the virus over the course of their infection, we 1) fitted a within-host model to viral RNA and infectious virus measures, obtained daily from infected lambs, calves, and young goats, 2) estimated the relationship between vertebrate host infectious titers and probability to infect mosquitoes, and 3) estimated the net infectiousness of each host species over the duration of their infectious periods, taking into account different survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along with the lifespan of infectious particles, could be sources of heterogeneity between hosts. Given available data on RVFV competent vectors, we found that, for similar infectious titers, infection rates in the Aedes genus were on average higher than in the Culex genus. Consequently, for Aedes-mediated infections, we estimated the net infectiousness of lambs to be 2.93 (median) and 3.65 times higher than that of calves and goats, respectively. In lambs, we estimated the overall infectiousness to be 1.93 times higher in individuals which eventually died from the infection than in those recovering. Beyond infectiousness, the relative contributions of host species to transmission depend on local ecological factors, including relative abundances and vector host-feeding preferences. Quantifying these contributions will ultimately help design efficient, targeted, surveillance and vaccination strategies.  相似文献   

18.
Chicken embryo fibroblasts(CEFs)are among the most commonly used cells for the study of interactions between chicken hosts and H5N1 avian influenza virus(AIV).In this study,the expression of eleven housekeeping genes typically used for the normalization of quantitative real-time PCR(QPCR)analysis in mammals were compared in CEFs infected with H5N1 AIV to determine the most reliable reference genes in this system.CEFs cultured from 10-day-old SPF chicken embryos were infected with 100 TCID50 of H5N1 AIV and harvested at 3,12,24 and 30 hours post-infection.The expression levels of the eleven reference genes in infected and uninfected CEFs were determined by real-time PCR.Based on expression stability and expression levels,our data suggest that the ribosomal protein L4(RPL4)and tyrosine 3-monooxygenase tryptophan 5-monooxygenase activation protein zeta polypeptide(YWHAZ)are the best reference genes to use in the study of host cell response to H5N1 AIV infection.However,for the study of replication levels of H5N1 AIV in CEFs,the β-actin gene(ACTB)and the ribosomal protein L4(RPL4)gene are the best references.  相似文献   

19.
Sutejo R  Yeo DS  Myaing MZ  Hui C  Xia J  Ko D  Cheung PC  Tan BH  Sugrue RJ 《PloS one》2012,7(3):e33732
The host response to the low pathogenic avian influenza (LPAI) H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN) expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG) expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.  相似文献   

20.
【目的】探讨番鸭呼肠孤病毒(muscovy duck reovirus,MDRV)和H9亚型禽流感病毒(H9 avian influenzavirus,AIV)共感染对番鸭胸腺免疫功能的影响。【方法】8日龄番鸭人工感染MDRV或/和H9 AIV,观察番鸭感染后发生率和死亡率、胸腺形态和显微结构变化,淋巴细胞增殖试验检测胸腺细胞增殖功能,RT-PCR检测MDRV或H9 AIV在番鸭胸腺的分布。【结果】H9 AIV感染后番鸭发病率低,无死亡;不影响胸腺的发育,胸腺病理变化不明显,但能显著抑制胸腺淋巴细胞增殖反应。MDRV单独感染番鸭生长迟缓,发病率80%,死亡率50%;胸腺萎缩,出现局限性坏死灶;对番鸭胸腺细胞增殖反应的有抑制作用,差异显著。共感染组番鸭生长迟缓,发病率90%,死亡率70%;胸腺萎缩,淋巴细胞减少,出现局限性坏死灶;对番鸭胸腺细胞增殖反应的有抑制作用,差异极显著。共感染组在病毒检出时间和检出率上均大于单一病毒感染组。【结论】H9AIV感染对胸腺的免疫抑制作用较弱,MDRV感染后对胸腺的免疫抑制作用较强,MDRV与H9AIV共感染在番鸭免疫反应抑制上有协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号