首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
棉花MADS框蛋白基因(GhMADS1)的克隆   总被引:3,自引:0,他引:3  
郑尚永  郭余龙  肖月华  罗明  侯磊  罗小英  裴炎 《遗传学报》2004,31(10):1136-1141
作为转录因子,MADS框蛋白基因在植物花器官发育中有着重要的功能。为研究棉花花器官发育的分子机理,以棉花花器官突变体CHV1(cotton homeotic variant)和徐州142正常植株为材料,利用棉花EST数据库资料,通过EST序列整合,从陆地棉徐州142花蕾中克隆出一个MADS框蛋白的编码区段,GenBank登录号为AF538965。该片段(GhMADS1)长713bp,包含一个711bp的开放阅读框,推导的氨基酸序列(236个氨基酸)与葡萄、烟草、矮牵牛、拟南芥和金鱼草等的AGL2组MADS框蛋白有很高的序列相似性。系统进化分析同样将GhMADS1基因归人AGt2组MADS框蛋白。RT-PCR分析显示,该基因在陆地棉的花瓣、雄蕊、胚珠和纤维中表达,特别是在花瓣中表达量最高,而在根、茎、叶等营养器官和棉花同源异型突变体CHV1(所有花器官均变为苞叶状叶性器官)的变异花蕾中不表达。这些结果说明GhMADS1基因可能在棉花花器官发育中有着重要的功能。  相似文献   

4.
5.
6.
7.
8.
The conserved region of numerous MADS genes in gulfweed (Sargassum fulvellum) was cloned by PCR with degenerate primers. Analysis of seventy individual clones resulted in the identification of nineteen types of nucleotide sequences. There sequences encode portions of the MADS domain in four distinctive groups. Six clones belong to the AGAMOUS subfamily, ten to AGL2, and two to AGL12. The remaining one clone is distinctive and appears to be diverged from an ancestor of the AGL2 and AP1 groups. There were no A or B class MADS genes. These results suggest that, as found in land plants, MADS genes also play major roles in controlling the development of algae.  相似文献   

9.
10.
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 ( SOC1 ) is one of the flowering pathway integrators and regulates the expression of LEAFY ( LFY ), which links floral induction and floral development. However, the mechanism by which SOC1, a MADS box protein, regulates LFY has proved elusive. Here, we show that SOC1 directly binds to the distal and proximal region of the LFY promoter where critical cis -elements are located. Intragenic suppressor mutant analysis shows that a missense mutation in the MADS box of SOC1 causes loss of binding to the LFY promoter as well as suppression of the flowering promotion function. The full-length SOC1 protein locates in the cytoplasm if expressed alone in protoplast transient expression assay, but relocates to the nucleus if expressed with AGAMOUS-LIKE 24 (AGL24), another flowering pathway integrator and a MADS box protein. The domain analysis shows that co-localization of SOC1 and AGL24 is mediated by the MADS box and the intervening region of SOC1. Finally, we show that LFY is expressed only in those tissues where SOC1 and AGL24 expressions overlap. Thus, we propose that heterodimerization of SOC1 and AGL24 is a key mechanism in activating LFY expression.  相似文献   

11.
MADS框基因在植物花器官发育中发挥着关键性作用。为研究棉花花器官发育的机理,以徐州142花蕾为材料,利用EST数据库资料,通过EST序列整合,克隆出了一个MADS域蛋白的编码区段,GenBank登录号为AY083173。该片段(GhMADS3)包含一个732 bp的开放阅读框,推导的氨基酸序列(244氨基酸)与可可,黄瓜,烟草,矮牵牛,金鱼草等的AG亚家族基因的序列相似性高。进化树重建分析将GhMADS3基因归入MADS框基因AG亚家族C功能分支的euAG分支。RT-PCR分析显示,该基因在雄蕊和心皮中表达,在根、茎、叶等营养器官,萼片,花瓣,花器官变异体chv1(所有花器官均变为苞叶状器官)的花蕾中不表达。将GhMADS3与35S启动子融合构建成嵌合基因转化烟草,转基因烟草植株花朵出现萼片(轮1)向心皮,花瓣(轮2)向雄蕊的转变,花器官表现明显的白化倾向。同时,在轮1观察到丝状结构的出现,该结构在此前类似的研究中尚无报道。这些结果说明,实验中克隆了一个有生物学功能的棉花的AG亚家族MADS框基因,该基因可能在棉花花器官发育中有重要的功能。  相似文献   

12.
MADS domain (for M CM1, A G, D EFA and S RF) proteins are regulatory proteins found in all major eukaryotic kingdoms. Plant MADS domain regulatory proteins have a region of moderate sequence similarity that has been designated as the K domain, and its predicted coiled-coil structure suggests a role in establishing a protein—protein interaction. In vivo studies with the Arabidopsis AGAMOUS (AG) protein have indicated that the K domain is important for AG function. Using a bait fusion protein containing the K domain and the C-terminal region of AG in a yeast two-hybrid selection, 156 clones that encode potential AG-interacting proteins were identified. These clones each encode one of four highly related MADS domain proteins: AGL2, AGL4, AGL6 and AGL9. Additional analysis showed that the K domain of AG alone was able to bind the K domains of these AGLs. This binding was further confirmed by immunoprecipitation experiments using in vitro synthesized AG and AGL K domains. These results strongly suggest that AG interacts with AGL2, AGL4, AGL6 and AGL9 in vivo. Based on these results and previous observations, it is proposed that the AG function requires interaction with at least one of these AGL proteins, and such interactions contribute to the functional specificity of the AG protein.  相似文献   

13.
14.
Ji SJ  Lu YC  Feng JX  Wei G  Li J  Shi YH  Fu Q  Liu D  Luo JC  Zhu YX 《Nucleic acids research》2003,31(10):2534-2543
Cotton fibers are differentiated epidermal cells originating from the outer integuments of the ovule. To identify genes involved in cotton fiber elongation, we performed subtractive PCR using cDNA prepared from 10 days post anthesis (d.p.a.) wild-type cotton fiber as tester and cDNA from a fuzzless-lintless (fl) mutant as driver. We recovered 280 independent cDNA fragments including most of the previously published cotton fiber-related genes. cDNA macroarrays showed that 172 genes were significantly up-regulated in elongating cotton fibers as confirmed by in situ hybridization in representative cases. Twenty-nine cDNAs, including a putative vacuolar (H+)-ATPase catalytic subunit, a kinesin-like calmodulin binding protein, several arabinogalactan proteins and key enzymes involved in long chain fatty acid biosynthesis, accumulated to greater than 50-fold in 10 d.p.a. fiber cells when compared to that in 0 d.p.a. ovules. Various upstream pathways, such as auxin signal transduction, the MAPK pathway and profilin- and expansin-induced cell wall loosening, were also activated during the fast fiber elongation period. This report constitutes the first systematic analysis of genes involved in cotton fiber development. Our results suggest that a concerted mechanism involving multiple cellular pathways is responsible for cotton fiber elongation.  相似文献   

15.
16.
Using cDNA Representational Difference Analysis (RDA) techniques, we isolated a cDNA that was expressed specifically in cotton fibers but not in the ovules of a fuzzless-lintless mutant (fl). We designated it as Gh-BTubL for it shares high sequence identity with known plant and yeast beta-tubulins. RT-PCR and robotic cDNA dot blot analyses indicated that the expression of Gh-BTubL was correlated with the elongation pattern of cotton fibers. In situ hybridization results verified that there was no Gh-BTubL mRNA in fl ovules while it was easily detected in the elongating wild type cotton fiber cells. Overexpression of Gh-BTubL in fission yeast induced longitudinal growth of the host cells by 1.74-fold, with no apparent effect on other aspects of the host cells. We suggest that Gh-BTubL plays an important role in cotton fiber elongation and we believe that elucidation of the control mechanisms for expression of tubulin-like proteins may help improve fiber quality and productivity.  相似文献   

17.
A cDNA named DlMADS8 was isolated from the young spikelets of the sweet bamboo, Dendrocalamus latiflorus by rapid amplification of cDNA end (RACE). DNA sequence analysis showed that DlMADS8 was composed of full ORF and 3'UTR, but without 5'UTR. The cDNA contained 1059 nucleotides and encoded a putative protein of 244 amino acid residues. The gene displayed the structure of a typical plant MADS-box gene, which consisted of a MADS domain, K domain, a short I region, and the C-terminal region. Phylogenetic analysis of plant MADS-box genes based on amino acid sequences revealed that DlMADS8 was grouped into the AGAMOUS-LIKE 2 (AGL2)-like subfamily. It was homologous to the LEAFY HULL STERILE1 (LHS1) genes of grasses. To study the functions of it, DlMADS8 cDNA clone driven by the CaMV 35S promoter was transformed into Arabidopsis thaliana. Transgenic plants of DlMADS8 exhibited the phenotypes of curled leaves and early flowering. After bolting, three novel phenotypes related to inflorescence development were observed in different transgenic plants. No obvious homeotic conversions of floral organs were observed in all of the 35S::DllMADS8 transgenic Arabidopsis plants. These results indicated that DlMADS8 probably plays a role in floral meristem determinacy and is involved in controlling the flowering time of D. latiflorus.  相似文献   

18.
AGL15, a MADS domain protein expressed in developing embryos.   总被引:18,自引:4,他引:14       下载免费PDF全文
To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo.  相似文献   

19.
为研究兰花成花转变及花发育的调控机理,利用反转录RT-PCR和RACE的方法,从蕙兰萼片中克隆出一个APETALA1/FRUITFULL-like(AP1/FUL-like)基因,命名为CfAP11,GenBank登录号为JQ031272.1.该基因编码的氨基酸序列与MADS-box蛋白家族中类APl/FUL亚家族中球花石斛FRUITFULL-like具有较高的同源性(84%),系统进化分析表明该蛋白的氨基酸序列与APl/FUL转录因子亚家族中的蛋白聚为一类.生物信息学分析推测表明,该基因编码的蛋白具有MADS保守域和相对保守的K区,二级结构中α-螺旋所占比例较高(58.97%),三级结构与月季、水稻和水仙非常相似.相对荧光定量PCR分析结果表明:CfAPll在根中表达痕量,生殖期比营养期叶片中表达量低、盛花期比花蕾期花葶中表达量高,由此推测,CfAP11可能与蕙兰的成花诱导、花发育有关;并发现CfAP11在盛花期花葶和子房中表达量远高于其他组织,表明其可能以某种机制参与果实的形成过程.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号