首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
枸杞体细胞胚发生中蛋白质和DNA代谢动态的立体计量   总被引:1,自引:0,他引:1  
本文以宁夏构杞无菌苗叶片为材料,离体培养,并诱导体细胞胚发生。根据细胞形态计量学原理,应用数字图像处理软件计量由光学底片经A/D转换成的数字图像中的蛋白质和DNA大分子,对于构杞体细胞胚发生过程中蛋白质和DNA分子的代谢动态进行了量化处理,并对量化结果分析了蛋白质和DNA代谢动态与体细胞胚发生、发育的关系。  相似文献   

2.
枸杞体细胞胚发生中蛋白质代谢动态的立体计量   总被引:2,自引:0,他引:2  
以宁夏枸杞无菌苗叶片为材料,离体培养并诱导体细胞胚胎发生。根据细胞形态计量学原理,应用数字图像处理软件计量由光学底片经A/D转换成的数字图像中的蛋白质大分子,对于枸杞体细胞胚发生过程中蛋白质分子的代谢动态进行了量化处理,并对量化结构分析了蛋白质代谢动态与体细胞胚发生、发育的关系。  相似文献   

3.
苜蓿体细胞胚胎发生过程中DNA、RNA和蛋白质的合成动态   总被引:1,自引:0,他引:1  
苜蓿(Medicago sativa L.)下胚轴切段产生的愈伤组织经2,4-D短时间诱导后,在无激素液体培养基中可形成大量体细胞胚胎。经2,4-D诱导后的愈伤组织在转入无激素培养基1天后,其DNA、RNA和蛋白质的合成即进入活跃合成状态,并在体细胞胚胎发育过程中保持逐步升高的趋势。在苜蓿体细胞胚胎发生过程中,有些蛋白质组分含量减少或消失,但绝大部分蛋白质组分的含量明显增加,并且有若干新蛋白的出现,其中24 KD和46 KD蛋白质为体细胞胚胎发生早期所特有。  相似文献   

4.
唐魏  吴绛云 《生物技术》1991,1(1):34-38
在获得比较理想的平贝母体细胞胚胎发生体系的基础上,我们应用放射性同位素液体闪烁计数技术测定了平贝母体细胞胚胎发生过程中球形胚、心形胚、鱼雷胚、子叶胚和成熟胚等时期的DNA、RNA和蛋白质合成动态,实验表明,从球形胚到子叶胚,核酸与蛋白质的合成速度递增。在子叶胚前期RNA合成达到高峰,在子叶胚期蛋白质合成达到高峰,在子叶胚后期DNA合成达到高峰,核酸与蛋白质合成速度的变化与胚体细胞增殖及器官分化相关联。  相似文献   

5.
小麦体细胞胚胎发生过程中核酸和可溶性蛋白质的变化   总被引:4,自引:2,他引:2  
  相似文献   

6.
A number of applied molecular cytogenetic studies require the quantitative assessment of fluorescence in situ hybridization (FISH) signals (for example, interphase FISH analysis of aneuploidy by chromosome enumeration DNA probes; analysis of somatic pairing of homologous chromosomes in interphase nuclei; identification of chromosomal heteromorphism after FISH with satellite DNA probes for differentiation of parental origin of homologous chromosome, etc.). We have performed a pilot study to develop a simple technique for quantitative assessment of FISH signals by means of the digital capturing of microscopic images and the intensity measuring of hybridization signals using Scion Image software, commonly used for quantification of electrophoresis gels. We have tested this approach by quantitative analysis of FISH signals after application of chromosome-specific DNA probes for aneuploidy scoring in interphase nuclei in cells of different human tissues. This approach allowed us to exclude or confirm a low-level mosaic form of aneuploidy by quantification of FISH signals (for example, discrimination of pseudo-monosomy and artifact signals due to over-position of hybridization signals). Quantification of FISH signals was also used for analysis of somatic pairing of homologous chromosomes in nuclei of postmortem brain tissues after FISH with "classical" satellite DNA probes for chromosomes 1, 9, and 16. This approach has shown a relatively high efficiency for the quantitative registration of chromosomal heteromorphism due to variations of centromeric alphoid DNA in homologous parental chromosomes. We propose this approach to be efficient and to be considered as a useful tool in addition to visual FISH signal analysis for applied molecular cytogenetic studies.  相似文献   

7.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

8.
A global DNA methylation and proteomics approach was used to investigate somatic embryo maturation in hybrid larch. Each developmental step during somatic embryogenesis was associated with a distinct and significantly different global DNA methylation level: from 45.8% mC for undifferentiated somatic embryos (1‐week proliferation) to 61.5% mC for immature somatic embryos (1‐week maturation), while maturation was associated with a decrease in DNA methylation to 53.4% for mature cotyledonary somatic embryos (8‐weeks maturation). The presence of 5‐azacytidine (hypo‐methylating agent) or hydroxyurea (hyper‐methylating agent) in the maturation medium altered the global DNA methylation status of the embryogenic cultures, and significantly reduced both their relative growth rate and embryogenic potential, suggesting an important role for DNA methylation in embryogenesis. Maturation was also assessed by examining changes in the total protein profile. Storage proteins, identified as legumin‐ and vicilin‐like, appeared at the precotyledonary stage. In the proteomic study, total soluble proteins were extracted from embryos after 1 and 8 weeks of maturation, and separated by two‐dimensional gel electrophoresis. There were 147 spots which showed significant differences between the stages of maturation; they were found to be involved mainly in primary metabolism and the stabilization of the resulting metabolites. This indicated that the somatic embryo was still metabolically active at 8 weeks of maturation. This is the first report of analyses of global DNA methylation (including the effects of hyper‐ and hypo‐treatments) and proteome during somatic embryogenesis in hybrid larch, and thus provides novel insights into maturation of conifer somatic embryos.  相似文献   

9.
10.
Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD) extracted from various planes of digital microscopic images of protein aggregates were used to characterize HDPA into different classes. Moreover, the ILMFD parameters extracted from aggregates show similar classification pattern to digital images of protein surface displayed by VMD viewer using PDB entry. We discuss the use of irregular patterns of heat-denatured aggregate proteins to understand various surface properties in native proteins.  相似文献   

11.
Thousands of DNA elimination events occur during somatic differentiation of many ciliated protozoa. In Tetrahymena, the eliminated DNA aggregates into submacronuclear structures containing the protein Pdd1p, a member of the chromodomain family. We disrupted somatic copies of PDD1, eliminating parental expression of the gene early in the sexual phase of the life cycle. Even though zygotic expression, from the undisrupted germline PDD1 copy, is activated before DNA elimination normally occurs, the somatic knockout cells suffer defects in DNA elimination, genome endoduplication, and nuclear resorption, and eventually die, demonstrating that PDD1 is essential and suggesting Pdd1p is directly involved in establishing a chromatin structure required for DNA elimination.  相似文献   

12.
Summary It has been suggested that c-myc, one of the proto-oncogenes, plays a role in normal somatic cell proliferation and differentiation. To define whether c-myc is only expressed during somatic cell division or is also expressed during meiotic cell division, the production of c-myc mRNA and protein were investigated in the mouse testis by usingin situ hybridization with non-radioactive DNA probes and enzyme immunohistochemistry respectively. Forin situ hybridization, T-T dimerized DNA probes were used and DNAs hybridizedin situ were detected immunohistochemically using specific antibody against T-T dimer. The results indicate that c-myc mRNA and protein are expressed in a cell-cycle-dependent manner only in spermatogonia and not in spermatocytes and spermatids.  相似文献   

13.
After the calli originating from the leaf explant of Lycium barbarum L. were selected and proliferated, the yellowish calli with same origin, similar state were transferred to O medium or E medium and the regenerative systems of organogenesis and somatic embryogenesis might form. By these systems, a comparative study on the synthetic activities of DNA, RNA and protein in the two in vitro regeneration pathways was carried out. The results were as follows: (1) Before meristemoid and embryogenic cells were formed, the synthesis of RNA was activated firstly, followed with the increase of synthesis rates of DNA and protein. During the formation of globular embryo, the synthesis rate of DNA increased quickly and then the activities of syntheses of RNA and protein reached the peak, while it was the contrary during germination of adventitious bud. (2) Components of soluble protein changed regularly. A peptide (153.6 kD) appeared during the initiation of both organogenesis and somatic embryogenesis. Several peptides disappearing gradually in the early-stage of differentiation could regenerate with the formation of shoot primordium and globular embryo. Corresponding to morphogenesis, both regenerative systems had specific peptides (84.9 kD, 46.3 kD and 44 kD, 36.2 kD) as molecular markers of its own development. In addition, the relation and mechanism of the two regenerative systems were discussed.  相似文献   

14.
Human DNA methyltransferase, the enzyme thought to be responsible for the somatic inheritance of patterns of DNA methylation, is an effective substrate for phosphorylation by protein kinase C. This provides a plausible mechanistic link between the action of tumor promoting phorbol esters, which stimulate protein kinase C, and abnormal patterns of DNA methylation often observed in transformed cells.  相似文献   

15.
Genomic methylation patterns are established during maturation of primordial germ cells and during gametogenesis. While methylation is linked to DNA replication in somatic cells, active de novo methylation and demethylation occur in post-replicative spermatocytes during meiotic prophase (1). We have examined differentiating male germ cells for alternative forms of DNA (cytosine-5)-methyltransferase (DNA MTase) and have found a 6.2 kb DNA MTase mRNA that is present in appreciable quantities only in testis; in post-replicative pachytene spermatocytes it is the predominant form of DNA MTase mRNA. The 5.2 kb DNA MTase mRNA, characteristic of all somatic cells, was detected in isolated type A and B spermatogonia and haploid round spermatids. Immunobolt analysis detected a protein in spermatogenic cells with a relative mass of 180,000-200,000, which is close to the known size of the somatic form of mammalian DNA MTase. The demonstration of the differential developmental expression of DNA MTase in male germ cells argues for a role for testicular DNA methylation events, not only during replication in premeiotic cells, but also during meiotic prophase and postmeiotic development.  相似文献   

16.
17.
18.
This study was undertaken to determine the effects of extremely low frequency (ELF; 60 Hz) electromagnetic (EM) fields on somatic growth and cortical development, as well as biochemical and morphological maturation, of the rat neopallium. On the fifth day of pregnancy, female rats were put in pairs into plastic cages that were housed in a specially constructed apparatus for irradiation under three separate sets of combination and intensity: 1) 1 kV/m and 10 gauss; 2) 100 kV/m and 1 gauss; and 3) 100 kV/m and 10 gauss. The dams were exposed for 23 h daily, from days 5 through 19 postconception after which they were returned to cages outside the exposure apparatus until they littered. The neonates were culled to eight pups per litter. At 0 (birth), 5, 12, and 19 days postnatally, they were killed for biochemical and morphological studies. Another group of pregnant rats was sham-exposed in an identical apparatus, which was not energized, and the pups were used as controls. The irradiated rats exhibited no physical abnormalities, nor did they show brain deformities such as swelling or herniation following exposure to ELF-EM fields. There was no difference in somatic growth between control and exposed rats, but a small reduction in cortical weight was observed in rats exposed at 1 kV/m and 10 gauss, and 100 kV/m and 1 gauss, respectively. Biochemical measurements of DNA. RNA, protein, and cerebroside concentrations indicated that among the three separate exposures, only the neopallium of rats exposed at 1 kV/m and 10 gauss showed a small reduction in DNA level, as well as small reductions in RNA and protein levels. No changes were noticed in cerebroside levels in any exposed animals, and there were no differences in protein/DNA and cerebroside/DNA ratios between control and exposed rats. Morphological observations did not reveal any detectable alterations in the irradiated rats. These results indicate that exposure to ELF-EM fields caused minimal or no changes in somatic growth and cerebral development of the rat. © 1993 Wiley-Liss, Inc.  相似文献   

19.
体细胞胚发生的生化基础   总被引:21,自引:0,他引:21  
在胚性细胞分化和分裂过程中ATP酶活性和分布的动态变化表明,这些胚性细胞进行着旺盛的主动物质吸收和活跃的新陈代谢过程。在多种植物的体细胞胚发生中过氧化物酶的活性与同工酶的种类都高于对照,而且在大麦中发现过氧化物酶、酯酶和酸性磷酸酶同工酶的结合应用可以作为体细胞胚发生的标志酶。胚性愈伤组织中可溶性蛋白质含量与组分远高于或多于非胚性愈伤组织。大多数材料中都存在45kD-55kD的胚胎发生特异性蛋白质组分。而且在体细胞胚发生中蛋白质和核酸代谢动态呈规律性变化,首先是RNA合成速率增加,继而是蛋白质的迅速合成,并在胚性细胞分化和发育过程中一直保持相对较高水平,其中mRNA种类丰富,不同发育时期mRNA种类不同,因此转译形成多种蛋白质。DNA的代谢相对较稳定,但在胚性细胞系中DNA合成量仍高于非胚性细胞系。加入蛋白质或核酸合成抑制剂,不仅抑制了蛋白质和核酸的合成,同时也抑制了体细胞胚的发生与发育,而且抑制剂加和时间愈早,影响愈严重。由此表明,蛋白质与核酸的合成为体细胞胚的分化和发育奠定了分子基础。  相似文献   

20.
本文以宁夏枸杞无菌苗叶片为材料,离体培养,并诱导体细胞胚胎发生。根据细胞形态计量学原理,应用数字图像处理软件计量由光学底片经A/D转换成的数字图像中的DNA大分子,对枸杞体细胞胚发生过程中DNA分子的代谢动态进行量化分析。结果表明:在整个体细胞胚发生过程中DNA代谢呈现动态变化。非胚性细胞与胚性细胞期的量化值分别为1.82%和1.91%;在二细胞胚、四细胞胚、多细胞胚时期DNA缓慢增长,随着胚性愈伤组织的发育,DNA的含量在梨形胚时期达到高峰;成熟胚的DNA含量虽有所下降,但仍维持较高水平。因此DNA的合成动态变化与体胚生长发育和细胞增殖密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号