首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Guo J  Prokai L 《Journal of Proteomics》2011,74(11):2360-2369
Posttranslational carbonylation of proteins by the covalent attachment of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is a biomarker of oxidative stress. Tandem mass spectrometry (MS/MS) has become an essential tool for characterization of this modification. Chemical tagging methods have been used to facilitate the immunoaffinity-based enrichment or even quantification of HNE-modified peptides and proteins. With MS/MS spectra of the untagged modified peptides considered as references, a comparative evaluation is presented focusing on the impact of affinity-tagging with four carbonyl-specific reagents (2,4-dinitrophenyl hydrazine, biotin hydrazide, biotinamidohexanoic acid hydrazide and N'-aminooxymethylcarbonyl-hydrazino D-biotin) on collision-induced dissociation of the tagged HNE-carbonylated peptides. Our study has shown that chemical labeling may not be carried out successfully for all the peptides and with all the reagents. The attachment of a tag usually cannot circumvent the occurrence of strong neutral losses observed with untagged species and, in addition, fragmentation of the introduced tag may also happen. Chemical tagging of certain peptides may, nevertheless, afford more sequence ions upon MS/MS than the untagged carbonylated peptide, especially when Michael addition of the lipid peroxidation product occurs on cysteine residues. Therefore, tagging may increase the confidence of identifications of HNE-modified peptides by database searches.  相似文献   

2.
The combination of isotope coded affinity tag (ICAT) reagents and tandem mass spectrometry constitutes a new method for quantitative proteomics. It involves the site-specific, covalent labeling of proteins with isotopically normal or heavy ICAT reagents, proteolysis of the combined, labeled protein mixture, followed by the isolation and mass spectrometric analysis of the labeled peptides. The method critically depends on labeling protocols that are specific, quantitative, general, robust, and reproducible. Here we describe the systematic evaluation of important parameters of the labeling protocol and describe optimized labeling conditions. The tested factors include the ICAT reagent concentration, the influence of the protein, SDS, and urea concentrations on the labeling reaction, and the reaction time. We demonstrate that using the optimized conditions specific and quantitative labeling was achieved on standard proteins as well as in complex protein mixtures such as a yeast cell lysate.  相似文献   

3.
The adaptation of sequences of chemical reactions to a solid-phase format has been essential to the automation, reproducibility, and efficiency of a number of biotechnological processes including peptide and oligonucleotide synthesis and sequencing. Here we describe a method for the site-specific, stable isotopic labeling of cysteinyl peptides in complex peptide mixtures through a solid-phase capture and release process, and the concomitant isolation of the labeled peptides. The recovered peptides were analyzed by microcapillary liquid chromatography and tandem mass spectrometry (microLC-MS/MS) to determine their sequences and relative quantities. The method was used to detect galactose-induced changes in protein abundance in the yeast Saccharomyces cerevisiae. A side-by-side comparison with the isotope-coded affinity tag (ICAT) method demonstrated that the solid-phase method for stable isotope tagging of peptides is comparatively simpler, more efficient, and more sensitive.  相似文献   

4.
Most covalent protein labeling schemes require a choice between visual and affinity properties, requiring the use of multiple fusion systems where both attributes are needed. While not disruptive at the single experiment level, this detail becomes critical when addressing high-throughput experimentation. Here we develop a uniform site-specific protein tag for use in both fluorescent and affinity screening. Covalent protein tagging with a stilbene reporter via promiscuous phosphopantetheinyltransferase (PPTase) modification enables a switchable, antibody-elicited fluorescent response in solution or on affinity resin. For demonstration purposes, VibB, a natural fusion protein harboring a carrier protein domain, was labeled with a stilbene tag through PPTase modification with a stilbene-labeled coenzyme A analogue. Analysis of the resulting stilbene-tagged VibB was accomplished by fluorescent and Western blot analysis with anti-stilbene monoclonal antibody EP2-19G2. The illustration of this method for general application to fusion protein analysis offers a dual role in assisting both solution-based fluorescent analysis and surface-based affinity detection and purification.  相似文献   

5.
A novel labeling procedure using biotin-conjugated protein-modifying reagents has been employed to study the structure and function of the human erythrocyte hexose transporter. The carbohydrate moiety of the isolated, reconstituted transporter was labeled by using galactose oxidase/biotin hydrazide. Cysteine residues, which are essential for transporter function, were tagged with a biotin-conjugated maleimide. Labeling with this reagent inhibited the binding of cytochalasin B to the transporter. Following sodium dodecyl sulfate-gel electrophoresis, labeling of the transporter and its proteolytic fragments was detected by Western blotting and probing with alkaline phosphatase-conjugated avidin. After tryptic cleavage of the transporter into two membrane domains, preparations reacted with galactose oxidase/biotin hydrazide were labeled on the 25-kDa glycosylated fragment, but not on the carbohydrate-free 19-kDa peptide. Biotin-maleimide-labeled cysteine residues on both peptides. Transporter polypeptide was fragmented more extensively using Staphylococcus aureus V8 protease. Limited digestion produced a broad band of 30-50 kDa and sharper bands of 23 and 21 kDa. More extensive digestion resulted in the disappearance of the 23-kDa peptide and the appearance of sharp bands of 20, 19, 17, 13, 11, 8, and 7 kDa. Biotin label introduced with galactose oxidase/biotin hydrazide was found on the broad 30-kDa band, confirming its identity as a glycopeptide. All of the peptides weighing more than 11 kDa contained cysteine residues labeled with biotin maleimide, while the 8- and 7-kDa peptides were unlabeled. These results demonstrate the potential usefulness of biotin-conjugated reagents as site-specific probes of membrane protein structure.  相似文献   

6.
Staphylococcal fibronectin-binding protein (FnbA) is a surface-associated receptor responsible for the reversible binding of bacteria to human fibronectin and fibrin(ogen). Recently we have shown that FnbA serves as a substrate for coagulation factor XIIIa and undergoes covalent cross-linking to its ligands, resulting in the formation of heteropolymers (Matsuka, Y. V., Anderson, E. T., Milner-Fish, T., Ooi, P., and Baker, S. (2003) Staphylococcus aureus fibronectin-binding protein serves as a substrate for coagulation factor XIIIa: Evidence for factor XIIIa-catalyzed covalent cross-linking to fibronectin and fibrin, Biochemistry 42, 14643-14652). Factor XIIIa also catalyzes the incorporation in FnbA of fluorescent probes dansylcadaverine and glutamine-containing synthetic peptide patterned on the NH(2)-terminal segment of fibronectin. In this study, the above probes were utilized for site-specific labeling and identification of reactive Gln and Lys residues targeted by factor XIIIa in rFnbA. Probe-decorated rFnbA samples were subjected to trypsin or Glu-C digestion, followed by separation of labeled peptides using reversed phase HPLC. Sequencing and mass spectral analyses of isolated probe-modified peptides have been employed for the identification of factor XIIIa-reactive Gln and Lys residues. Analysis of dansylcadaverine-labeled peptides resulted in the identification of one major, Gln103, and three minor, Gln105, Gln783, and Gln830, amine acceptor sites. The labeling procedure with dansyl-PGGQQIV probe revealed that Lys157, Lys503, Lys620, and Lys762 serve as amine donor sites. The identified reactive glutamine acceptor and lysine donor sites of FnbA may participate in transglutaminase-mediated cross-linking reactions resulting in the covalent attachment of pathogenic Staphylococcus aureus to human host proteins.  相似文献   

7.
Stable isotope tagging methods have enabled relative quantitation of proteins between samples in LC-MS/MS analyses. However, most such methods are not applicable to the differential quantitation of modified proteins because the isotope tagging reagents only react with certain peptides or because the reagents incorporate a mass increment that is too small to allow reliable quantitation on low resolution ion trap MS instruments. Here, we describe the use of d0- and d5-phenyl isocyanate (PIC) as N-terminal reactive tags for essentially all peptides in proteolytic digests. PIC reacts quantitatively with peptide N-terminal amines within minutes at neutral pH and the PIC-labeled peptides undergo informative MS/MS fragmentation. Ratios of d0- and d5-PIC-labeled derivatives of several model peptides were linear across a 10000-fold range of peptide concentration ratios, thus indicating a wide dynamic range for quantitation. Application of PIC labeling enabled relative quantitation of several styrene oxide adducts of human hemoglobin in LC-MS/MS analyses. PIC labeling offers a versatile means of quantifying changes in modified or variant protein forms in paired samples.  相似文献   

8.
The quantitative analysis of protein mixtures is pivotal for the understanding of variations in the proteome of living systems. Therefore, approaches have been recently devised that generally allow the relative quantitative analysis of peptides and proteins. Here we present proof of concept of the new metal-coded affinity tag (MeCAT) technique, which allowed the quantitative determination of peptides and proteins. A macrocyclic metal chelate complex (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)) loaded with different lanthanides (metal(III) ions) was the essential part of the tag. The combination of DOTA with an affinity anchor for purification and a reactive group for reaction with amino acids constituted a reagent that allowed quantification of peptides and proteins in an absolute fashion. For the quantitative determination, the tagged peptides and proteins were analyzed using flow injection inductively coupled plasma MS, a technique that allowed detection of metals with high precision and low detection limits. The metal chelate complexes were attached to the cysteine residues, and the course of the labeling reaction was followed using SDS-PAGE and MALDI-TOF MS, ESI MS, and inductively coupled plasma MS. To limit the width in isotopic signal spread and to increase the sensitivity for ESI analysis, we used the monoisotopic lanthanide macrocycle complexes. Peptides tagged with the reagent loaded with different metals coelute in liquid chromatography. In first applications with proteins, the calculated detection limit for bovine serum albumin for example was 110 amol, and we have used MeCAT to analyze proteins of the Sus scrofa eye lens as a model system. These data showed that MeCAT allowed quantification not only of peptides but also of proteins in an absolute fashion at low concentrations and in complex mixtures.  相似文献   

9.
Modern drug discovery strongly depends on the availability of target proteins in sufficient amounts and with desired properties. For some applications, proteins have to be produced with specific modifications such as tags for protein purification, fluorescent or radiometric labels for detection, glycosylation and phosphorylation for biological activity, and many more. It is well known that covalent modifications can have adverse effects on the biological activity of some target proteins. It is therefore one of the major challenges in protein chemistry to generate covalent modifications without affecting the biological activity of the target protein. Current procedures for modification mostly rely on non-specific labelling of lysine or cysteine residues on the protein of interest, but alternative approaches dedicated to site-specific protein modification are being developed and might replace most of the commonly used methodologies. In this study, we investigated two novel methods where target proteins can be expressed in E. coli with a fusion partner that allows protein modification in a covalent and highly selective manner. Firstly, we explored a method based on the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (hAGT) as a fusion tag for site-directed attachment of small molecules. The AGT-tag (SNAP-tag) can accept almost any chemical moiety when it is attached to the guanine base through a benzyl group. In our experiments we were able to label a target protein fused to the AGT-tag with various fluorophores coupled to O6-benzylguanine. Secondly, we tested in vivo and in vitro site-directed biotinylation with two different tags, consisting of either 15 (AviTag) or 72 amino acids (BioEase tag), which serve as a substrate for bacterial biotin ligase birA. When birA protein was co-expressed in E. coli biotin was incorporated almost completely into a model protein which carried these recognition tags at its C-terminus. The same findings were also obtained with in vitro biotinylation assays using pure birA independently over-expressed in E. coli and added to the biotinylation reaction in the test tube. For both biotinylation methods, peptide mapping and LC-MS proved the highly site-specific modification of the corresponding tags. Our results indicate that these novel site-specific labelling reactions work in a highly efficient manner, allow almost quantitative labelling of the target proteins, have no deleterious effect on the biological activity and are easy to perform in standard laboratories.  相似文献   

10.
Chemically reactive metabolites (CRMs) are thought to be responsible for a number of adverse drug reactions through modification of critical proteins. Methods that defined the chemistry of protein modification at an early stage would provide invaluable tools for drug safety assessment. Here, human GST pi (GSTP) was exploited as a model target protein to determine the chemical, biochemical and functional consequences of exposure to the hepatotoxic CRM of paracetamol (APAP), N-acetyl-p-benzoquinoneimine (NAPQI). Site-specific, dose-dependent modification of Cys47 in native and His-tagged GSTP was revealed by MS, and correlated with inhibition of glutathione (GSH) conjugating activity. In addition, the adaptation of iTRAQ labelling technology to define precisely the quantitative relationship between covalent modification and protein function is described. Multiple reaction monitoring (MRM)-MS of GSTP allowed high sensitivity detection of modified peptides at physiological levels of exposure. Finally, a bioengineered mutant cytochrome P450 with a broad spectrum of substrate specificities was used in an in vitro reaction system to bioactivate APAP: in this model, GSTP trapped the CRM and exhibited both reduced enzyme activity and site-specific modification of the protein. These studies provide the foundation for the development of novel test systems to predict the toxicological potential of CRMs produced by new therapeutic agents.  相似文献   

11.
To prevent in vivo degradation, small peptides are usually expressed in fusion proteins from which target peptides can be released by proteolytic or chemical reagents. In this report, a modified Ssp dnaB mini-intein linked with a chitin binding domain tag was used as a fusion partner for production of human brain natriuretic peptide (hBNP), a hormone for the treatment of congestive heart failure. The fusion protein was expressed as an inclusion body in Escherichia coli. After refolding, the fusion protein was purified with a chitin affinity column, and dnaB mini-intein mediated peptide-bond hydrolysis was triggered by shifting the pH in the chitin column to 7.0 at 25 degrees C for 16 h, which led to the release and separation of hBNP from its fusion partner. The hBNP sample was further purified with reverse phase HPLC and its biological activity was assayed in vitro. It was found that hBNP had a potent vasodilatory effect on rabbit aortic strips with an EC(50) of (1.24+/-0.32)x10(-6)mg/ml, which was similar to that of the synthetic BNP standard. The expression strategy described here promises to produce small peptides without use of proteolytic or chemical reagents.  相似文献   

12.
A FLAG tag selective protein labeling method is newly developed in this study. Coupling of the selective binding between synthetic Ni-complex probe and FLAG tag with the acyl transfer reaction enables the site-selective covalent modification of FLAG peptide and FLAG-tag fused protein.  相似文献   

13.
Recombinant proteins are commonly expressed in fusion with an affinity tag to facilitate purification. We have in the present study evaluated the possible use of the human glutaredoxin 2 (Grx2) as an affinity tag for purification of heterologous proteins. Grx2 is a glutathione binding protein and we have shown in the present study that the protein can be purified from crude bacterial extracts by a one-step affinity chromatography on glutathione-Sepharose. We further showed that short peptides could be fused to either the N- or C-terminus of Grx2 without affecting its ability to bind to the glutathione column. However, when Grx2 was fused to either the 27 kDa green fluorescent protein or the 116 kDa beta-galactosidase, the fusion proteins lost their ability to bind glutathione-Sepharose. Insertion of linker sequences between the Grx2 and the fusion protein did not restore binding to the column. In summary, our findings suggest that Grx2 may be used as an affinity tag for purification of short peptides and possibly also certain proteins that do not interfere with the binding to glutathione-Sepharose. However, the failure of purifying either green fluorescent protein or beta-galactosidase fused to Grx2 suggests that the use of Grx2 as an affinity tag for recombinant protein purification is limited.  相似文献   

14.
A protocol for selective and site-specific enzymatic labeling of proteins is described. The method exploits the protein co-/post-translational modification known as myristoylation, the transfer of myristic acid (a 14-carbon saturated fatty acid) to an N-terminal glycine catalyzed by the enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT). Escherichia coli, having no endogenous NMT, is used for the coexpression of both the transferase and the target protein to be labeled, which participate in the in vivo N-terminal attachment of synthetically derived tagged analogs of myristic acid bearing a 'clickable' tag. This tag is a functional group that can undergo bio-orthogonal ligation via 'click' chemistry, for example, an azide, and can be used as a handle for further site-specific labeling in vitro. Here we provide protocols for in vivo N-terminal tagging of recombinant protein, and the synthesis and application of multifunctional reagents that enable protein labeling via click chemistry for affinity purification and detection by fluorescence. In addition to general N-terminal protein labeling, the protocol would be of particular use in providing evidence for native myristoylation of proteins of interest, proof of activity/selectivity of NMTs and cross-species reactivity of NMTs without resorting to the use of radioactive isotopes.  相似文献   

15.
We report the discovery of a highly reactive peptide tag for the specific cysteine conjugation of proteins. Screening of cysteine-containing peptides using ELISA-type screening yielded a 19-amino acid tag (DCPPPDDAADDAADDAADD), named DCP3 tag, which enabled the rapid and selective labeling of the tag-fused protein with a synthetic zinc complex on the surface of living cells.  相似文献   

16.
Fusion protein constructs of the 56 amino acid globular protein GB-1 with various peptide sequences, coupled with the incorporation of a histidine tag for affinity purification, have generated high-yield fusion protein constructs. Methionine residues were inserted into the constructs to generate pure peptides following CNBr cleavage, yielding a system that is efficient and cost effective for isotopic labeling of peptides for NMR studies and other disciplines such as mass spectroscopy. Six peptides of varying sequences and hydrophobicities were expressed using this GB-1 fusion protein technique and produced soluble fusion protein constructs in all cases. The ability to easily express and purify recombinant peptides in high yields is applicable for biomedical research and has medicinal and pharmaceutical applications.  相似文献   

17.
The new generation of isotope-coded affinity tag (ICAT) reagents have been evaluated by labeling an equimolar amount of bovine serum albumin (BSA) with ICAT-12C9 and ICAT-13C9, combining the mixtures, digesting them with trypsin and analyzing the digestate both by muRPLC-tandem MS and by matrix-assisted laser desorption ionization (MALDI) TOF/TOF MS. The use of 13C in place of 2H resulted in both of the labeled peptides having identical elution characteristics in a reversed-phase separation. This similarity in elution allows ICAT-labeled peptides to be effectively analyzed using a muRPLC-MALDI-MS strategy as well. All of the cysteinyl-containing tryptic peptides from BSA were identified with only a 10% variation in the relative abundance measurements between the light and heavy versions of each peptide. A facile method for the removal of contaminants that arise from the cleaved biotin moiety that otherwise interfere with downstream separations and MS analysis has also been developed. The new ICAT reagents were then applied to the analysis of a cortical neuron proteome sample to identify proteins regulated by the antitumor drug, camptothecin.  相似文献   

18.
8-Azidoflavins have been synthesized and their potential as photoaffinity labels for flavoproteins has been explored. They are very photolabile, and in aqueous media they react with solvent to yield 8-aminoflavins and 8-hydroxlaminoflavins as the main products. They fulfill the criteria expected of a good photoaffinity label, since they bind stoichiometrically at the flavin-binding site of flavoproteins, thus minimizing problems of nonspecific labeling. Second, they absorb strongly in the visible, so that the reactive nitrene can be generated without short wavelength light, minimizing the possibility of light-induced damage of the protein. Third, in the absence of light, 8-N3-flavins are stable, permitting a study of their binding to apoproteins. 8-Azidoflavins have been bound to hen egg white riboflavin-binding protein, Megasphera elsdenii flavodoxin, yeast Old Yellow Enzyme, Aspergillus niger, glucose oxidase, and pig kidney D-amino acid oxidase, and the effect of exposure to visible light has been determined. Only small extents of covalent attachment of the flavin to the protein were found with flavodoxin, D-amino acid oxidase, and Old Yellow Enzyme; much more extensive labeling was obtained with glucose oxidase and riboflavin-binding protein. In addition to their photoreactivity, 8-azidoflavins have been found to be converted to 8-aminoflavins by reaction with sulfite or upon reduction. Similar reactions occur with 8-hydroxylamino-, 8-(O-methyl)hydroxylamino-, and 8-hydrazinoflavins, which serve as models for possible flavin-protein covalent linkages which could be formed in the photolabeling procedure. Some of the properties of these flavins, which were obtained by reaction of 8-F-flavin with the corresponding nucleophiles, are also described.  相似文献   

19.
In situ investigations in living cell membranes are important to elucidate the dynamic behaviors of membrane proteins in complex biomembrane environments. Protein-specific labeling is a key technique for the detection of a target protein by fluorescence imaging. The use of post-translational labeling methods using a genetically encodable tag and synthetic probes targeting the tag offer a smaller label size, labeling with synthetic fluorophores, and precise control of the labeling ratio in multicolor labeling compared with conventional genetic fusions with fluorescent proteins. This review focuses on tag–probe labeling studies for live-cell analysis of membrane proteins based on heterodimeric peptide pairs that form coiled-coil structures. The robust and simple peptide–peptide interaction enables not only labeling of membrane proteins by noncovalent interactions, but also covalent crosslinking and acyl transfer reactions guided by coiled-coil assembly. A number of studies have demonstrated that membrane protein behaviors in live cells, such as internalization of receptors and the oligomeric states of various membrane proteins (G-protein-coupled receptors, epidermal growth factor receptors, influenza A M2 channel, and glycopholin A), can be precisely analyzed using coiled-coil labeling, indicating the potential of this labeling method in membrane protein research.  相似文献   

20.
Genetically encoded reporter constructs that yield fluorescently labeled fusion proteins are a powerful tool for observing cell biological phenomena, but they have limitations. Sortagging (sortase-mediated transpeptidation) is a versatile chemoenzymatic system for site-specific labeling of proteins with small (<2 kDa) probes. Sortagging combines the precision of a genetically encoded tag with the specificity of an enzymatic reaction and the ease and chemical versatility of peptide synthesis. Here we apply this technique to proteins in vitro and on the surface of living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号