首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Yin  Y Wang  Y Li  C Deng  X Zhang  P Yang 《Proteomics》2012,12(18):2784-2791
In this study, sandwich-structured graphene/mesoporous silica composites (C8-modified graphene@mSiO(2) ) were synthesized by coating mesoporous silica onto hydrophilic graphene nanosheets through a surfactant-mediated cocondensation sol-gel process. The newly prepared C8-modified graphene@mSiO(2) nanocomposites possess unique properties of extended plate-like morphology, good water dispersibility, highly open pore structure, uniform pore size (2.8 nm), high surface area (632 m(2) /g), and C8-modified-interior pore walls. The unique structure of the C8-modified graphene@mSiO(2) composite nanosheets not only provide extended planes with hydrophilic surface that prevents aggregation in solution, but also offer a huge number of C8-modified mesopores with high surface area that can ensure an efficient adsorption of peptides through hydrophobic-hydrophobic interaction between C8-moified pore walls and target molecules. The obtained C8-modified graphene@mSiO(2) materials were utilized for size selectively and specifically enriching peptides in standard peptide mixtures and endogenous peptides in real biological samples (mouse brain tissue).  相似文献   

2.
In this work, magnetic graphene double‐sided mesoporous nanocomposites (mag‐graphene@mSiO2) were synthesized by coating a layer of mesoporous silica materials on each side of magnetic grapheme. The surfactant (CTAB) mediated sol‐gel coating was performed using tetraethyl orthosilicate as the silica source. The as‐made magnetic graphene double‐sided mesoporous silica composites were treated with high‐temperature calcination to remove the hydroxyl on the surface. The novel double‐sided materials possess high surface area (167.8 cm2/g) and large pore volume (0.2 cm3/g). The highly open pore structure presents uniform pore size (3.2 nm) and structural stability. The hydrophobic interior pore walls could ensure an efficient adsorption of target molecules through hydrophobic–hydrophobic interaction. At the same time, the magnetic Fe3O4 particles on both sides of the materials could simplify the process of enrichment, which plays an important role in the treatment of complex biological samples. The magnetic graphene double‐sided nanocomposites were successfully applied to size‐selective and specific enrichment of peptides in standard peptide mixtures, protein digest solutions, and human urine samples. Finally, the novel material was applied to selective enrichment of endogenous peptides in mouse brain tissue. The enriched endogenous peptides were then analyzed by LC‐MS/MS, and 409 endogenous peptides were detected and identified. The results demonstrate that the as‐made mag‐graphene@mSiO2 have powerful potential for peptidome research.  相似文献   

3.
In this work, we report the development of a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@nSiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high‐surface areas of the microspheres were demonstrated to have good size‐exclusion effect for the adsorption of peptides. An increase of S/N ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using myoglobin tryptic digest solution. The enrichment efficiency of re‐used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large‐scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano‐LC‐ESI‐MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.  相似文献   

4.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   

5.
Chen H  Xu X  Yao N  Deng C  Yang P  Zhang X 《Proteomics》2008,8(14):2778-2784
In this study, novel C8-functionalized magnetic polymer microspheres were prepared by coating single submicron-sized magnetite particle with silica and subsequent modification with chloro (dimethyl) octylsilane. The resulting C8-functionalized magnetic silica (C8-f-M-S) microspheres exhibit well-defined magnetite-core-silica-shell structure and possess high content of magnetite, which endow them with high dispersibility and strong magnetic response. With their magnetic property, the synthesized C8-f-M-S microspheres provide a convenient and efficient way for enrichment of low-abundance peptides from tryptic protein digest and human serum. The enriched peptides/proteins were subjected for MALDI-TOF MS analysis and the enrichment efficiency was documented. In a word, the facile synthesis and efficient enrichment process of the novel C8-f-M-S microspheres make them promising candidates for isolation of peptides even in complex biological samples such as serum, plasma, and urine.  相似文献   

6.
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate.  相似文献   

7.
Man Zhao  Chunhui Deng 《Proteomics》2016,16(7):1051-1058
In this work, for the first time, perfluorinated magnetic mesoporous microspheres were designed and synthesized for the highly specific enrichment of fluorous‐derivatized phosphopeptides through the unique fluorine–fluorine interactions. The perfluorinated magnetic mesoporous microspheres were prepared through a surfactant‐mediated one‐pot approach and successfully applied to the selective extraction of fluorous‐derivatized phosphopeptides from β‐casein tryptic digest, protein mixtures, and human serum. Thanks to the hydrophilic silanol groups exposed on the surface, perfluorinated groups modified in the pore channels and the magnetic cores, the flourous‐functionalized magnetic microspheres exhibited excellent dispersibility, specificity toward fluorous‐derivatized phosphopeptides while facilitated separation procedures. The novel composites achieved a high selectivity of 1:1000 toward nonphosphorylated peptides and proved to be practicable in the enrichment of endogenous phosphopeptides in the human serum sample.  相似文献   

8.
Fe3O4@ZrO2 microspheres with well-defined core-shell structure were prepared and applied for the highly selective enrichment of phosphopeptides from tryptic digest product of proteins. To successfully coat iron oxide microspheres with uniform zirconia shell, magnetic Fe3O4 microspheres were first synthesized via a solvothermal reaction, followed by being coated with a thin layer of carbon by polymerization and carbonization of glucose through hydrothermal reaction. Finally, with the use of the Fe3O4@C microspheres as templates, zirconium isopropoxide was prehydrolyzed and absorbed onto the microspheres and eventually converted into zirconia by calcinations. The as-prepared Fe3O4@ZrO2 core-shell microspheres were used as affinity probes to selectively concentrate phosphopeptides from tryptic digest of beta-casein, casein, and five protein mixtures to exemplify their selective enrichment ability of phosphopeptides from complex protein samples. In only 0.5 min, phosphopeptides sufficient for characterization by MALDI-MS could be enriched by the Fe3O4@ZrO2 microspheres. The results demonstrate that Fe3O4@ZrO2 microspheres have the excellent selective enrichment capacity for phosphopeptides from complex samples. The performance of the Fe3O4@ZrO2 microspheres was further compared with commercial IMAC beads for the enrichment of peptides originating from tryptic digestion of beta-casein and bovine serum albumin (BSA) with a molar ratio of 1:50, and the results proved a stronger selective ability of Fe3O4@ZrO2 microspheres over IMAC beads. Finally, the Fe3O4@ZrO2 microspheres were successfully utilized for enrichment of phosphopeptides from human blood serum without any other purification procedures.  相似文献   

9.
In this work, core‐shell magnetic metal organic framework (MOF) microspheres were successfully synthesized by coating magnetite particles with mercaptoacetic acid and subsequent reactions with ethanol solutions of Cu(OAc)2 and benzene‐1,3,5‐tricarboxylic acid (designated as H3btc) alternately. The resulting Fe3O4@[Cu3(btc)2] possess strong magnetic responsiveness. We applied the novel nanocomposites in the enrichment of low‐concentration standard peptides, peptides in MYO and BSA tryptic digests and in human urine in combination with MALDI‐TOF MS analysis for the first time. In addition, the Cu3(btc)2 MOF shells exhibit strong affinity to peptides, thus providing a rapid and convenient approach to the concentration of low‐abundance peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI‐TOF MS after enrichment with the magnetic MOF composites. In brief, the facile synthesis and efficient enrichment process of the Fe3O4@[Cu3(btc)2] microspheres make them promising candidates for the isolation of peptides in even complex biological environments.  相似文献   

10.
Li Y  Yan B  Deng C  Yu W  Xu X  Yang P  Zhang X 《Proteomics》2007,7(14):2330-2339
An easily replaceable enzymatic microreactor has been fabricated based on the glass microchip with trypsin-immobilized magnetic silica microspheres (MS microspheres). Magnetic microspheres with small size (approximately 300 nm in diameter) and high magnetic responsivity to magnetic field (68.2 emu/g) were synthesized and modified with tetraethyl orthosilicate (TEOS). Aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were then introduced to functionalize the MS microspheres for enzyme immobilization. Trypsin was stably immobilized onto the MS microspheres through the reaction of primary amines of the proteins with aldehyde groups on the MS microspheres. The trypsin-immobilized MS microspheres were then locally packed into the microchannel by the application of a strong field magnet to form an on-chip enzymatic microreactor. The digestion efficiency and reproducibility of the microreactor were demonstrated by using cytochrome c (Cyt-C) as a model protein. When compared with an incubation time of 12 h by free trypsin in the conventional digestion approach, proteins can be digested by the on-chip microreactor in several minutes. This microreactor was also successfully applied to the analysis of an RPLC fraction of the rat liver extract. This opens a route for its further application in top-down proteomic analysis.  相似文献   

11.
以凹凸棒石黏土为原料,制备γ-Fe2O3-凹土超顺磁性纳米复合材料(γ-Fe2O3-ATP)作为猪胰脂肪酶(PPL)固定化的载体,利用透射电子显微镜(TEM)、N2吸附脱附等温图(BET)、振动试样磁强计(VSM)等对材料进行表征,同时对固定化条件和固定化酶的相关性质进行了研究。结果表明:制备的γ-Fe2O3-ATP是介孔材料,比表面积为102.63 m2/g,平均孔径为10.862 nm,饱和磁化强度为8.915 emu/g,其作为载体能实现固定化酶与反应介质简单、快速分离回收和重复利用。在固定化时间为4 h及pH 6.0时制备的固定化酶效果最佳;经过6 h高温保存后固定化酶可保留初始酶活的52%,而游离酶仅保留初始酶活的19%,同时固定化酶在重复使用5次后酶活仍保留初始酶活的60%。  相似文献   

12.
Due to the dynamic nature and low stoichiometry of protein phosphorylation, enrichment of phosphorylated peptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Immobilized metal affinity chromatography (IMAC) is a popular way to enrich phosphopeptides; however, conventional IMAC lacks enough specificity for efficient phosphoproteome analysis. In this study, novel Fe 3O 4@TiO 2 microspheres with well-defined core-shell structure were prepared and developed for highly specific purification of phosphopeptides from complex peptide mixtures. The enrichment conditions were optimized using tryptic digests of beta-casein, and the high specificity of the Fe 3O 4@TiO 2 core-shell microspheres was demonstrated by effectively enriching phosphopeptides from the digest mixture of alpha-casein and beta-casein, as well as a five-protein mixture containing nonphosphoproteins (bovine serum albumin (BSA), myoglobin, cytochrome c) and phosphoproteins (ovalbumin and beta-casein). The Fe 3O 4@TiO 2 core-shell microspheres were further successfully applied for the nano-LC-MS/MS analysis of rat liver phosphoproteome, which resulted in identification of 56 phosphopeptides (65 phosphorylation sites) in mouse liver lysate in a single run, indicating the excellent performance of the Fe 3O 4@TiO 2 core-shell microspheres.  相似文献   

13.
Herein we report the use of mesoporous aluminosilicate (MPAS) for the simultaneous extraction of peptides and lipids from complex body fluids such as human plasma and synovial fluid. We show that MPAS particles, given their mesostructural features with nanometric pore size and high surface area, are an efficient device for simultaneous extraction of peptidome and lipidome from as little as a few microliters of body fluids. The peptides and the lipids, selected and enriched by MPAS particles and rapidly visualized by MALDI‐TOF MS, could form part of a diagnostic profile of the “peptidome” and the “lipidome” of healthy versus diseased subjects in comparative studies. The ability of this approach to rapidly reveal the overall pattern of changes in both lipidome and peptidome signatures of complex biofluids could be of valuable interest for handling large numbers of samples required in ‐omics studies for the purpose of finding novel biomarkers.  相似文献   

14.
Sensitive and specific diagnosis and monitoring of disease progression are of prime importance to develop new therapies for Alzheimer's disease patients. Although the diagnostic accuracy, verified by pathological examination is high, it is currently not possible to diagnose Alzheimer's disease with a high degree of certainty until relatively late in the disease process. Here, we have undertaken a peptidome analysis of postmortem cerebrospinal fluid of neuropathologically confirmed Alzheimer's disease patients and non-demented controls using a combination of methods and technologies. This includes novel sample preparation based on the enrichment of endogenous, proteolytically derived peptides as well as peptides non-covalently bound to abundant proteins. We observed differences in peptide profiles associated with Alzheimer's disease in the endogenous peptide fraction and in the protein-bound peptide fraction. The discriminating peptides in the unbound peptide fraction were identified as VGF nerve growth factor inducible precursor, and complement C4 precursor, whereas the discriminating peptides in the protein-bound fraction were identified as VGF nerve growth factor inducible precursor, and alpha-2-HS-glycoprotein.  相似文献   

15.
In this study, hydrothermally prepared magnetic α-Fe2O3 nanoparticles were dispersed in chitosan (CH) solution to fabricate nanocomposite film. X-ray diffraction (XRD) patterns indicated that the α-Fe2O3 nanoparticles were pure α-Fe2O3 with rhombohedral structures, and the fabrication of CH did not result in a phase change. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) results showed that the hexagonal and spherical monodispersed α-Fe2O3 nanoparticles were encapsulated into the spherical dumb shaped CH-α-Fe2O3 nanocomposite film with a mean diameter of ~87 and ~110 nm respectively. The α-Fe2O3 nanoparticles and CH-α-Fe2O3 nanocomposite film were also characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). Magnetic measurements revealed that the saturated magnetization (Ms) and remanent magnetization (Mr) of the pure α-Fe2O3 nanoparticles reached 0.573 emu/g and 0.100 emu/g respectively and the nanoparticles showed the characteristics of weak ferromagnetic before and after coating with CH.  相似文献   

16.
In this study, we employed, for the first time, the Ce4+-chelated magnetic silica microspheres to selectively concentrate phosphopeptides from protein digest products. Cerium ions were chelated onto magnetic silica microspheres using the strategy we established before. After enrichment, the phosphopeptide-conjugated magnetic microspheres were separated from the sample solution just by using a magnet. With the optimized enrichment conditions, the performance of the Ce4+-chelated magnetic microspheres was compared with the Fe3+-chelated microspheres using tryptic digested peptides originating from ovalbumin, a five protein mixture containing phosphoproteins and nonphosphoproteins, as well as a mixture of beta-casein and BSA with a molar ratio of 1:50. Compared to Fe3+, Ce4+-chelated magnetic microspheres exhibited more selective isolation ability for concentrating phosphopeptides from complex mixtures. Even when the amount of the tryptic digest product of BSA is 50 times higher than that of beta-casein in the sample solution, the trace phosphopeptides derived from beta-casein can still be concentrated effectively by the Ce4+-chelated magnetic microspheres in only 30 s. Furthermore, we initially utilized the Ce4+-chelated magnetic microspheres to directly enrich phosphopeptides from human serum without extra purification steps or tedious treatment, which opens up a possibility for their further application in phosphoproteomics.  相似文献   

17.
Chen H  Liu S  Li Y  Deng C  Zhang X  Yang P 《Proteomics》2011,11(5):890-897
The oleic acid‐functionalized magnetite nanoparticles (OA‐Fe3O4) with mean diameter of about 15 nm were synthesized through a low‐cost, one‐pot method and were designed as hydrophobic probes to realize the convenient, efficient and fast concentration of low‐concentration peptides followed by MALDI‐TOF‐MS analysis. The capability of OA‐Fe3O4 nanoparticles in concentration of low‐abundance peptides from simple and complex solutions were evaluated by comparing them with a sort of C8‐modified magnetic microspheres. Samples of standard peptide solution, protein digest solution and human serum were introduced in the evaluating process, and the OA‐Fe3O4 nanoparticles exhibited good surface affinity toward low‐concentration peptides  相似文献   

18.
The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation‐induced self‐assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI‐TOF‐MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.  相似文献   

19.
In this work, the composites of magnetic Fe3O4@SiO2@poly (styrene‐co‐4‐vinylbenzene‐boronic acid) microspheres with well‐defined core–shell–shell structure were facilely synthesized and applied to selectively enrich glycopeptides. Due to the relatively large amount of vinyl groups introduced by 3‐methacryloxy‐propyl‐trimethoxysilane on the core‐shell surface, the poly(styrene‐co‐4‐vinylbenzeneboronic acid) (PSV) was coated with high efficiency, resulting in a large amount of boronic acid on the outermost polymer shell of the Fe3O4@SiO2@PSV microspheres, which is of great importance to improve the enrichment efficiency for glycopeptides. The obtained Fe3O4@SiO2@PSV microspheres were successfully applied to the enrichment of glycopeptides with strong specificity and high selectivity, evaluated by capturing glycopeptides from tryptic digestion of model glycoprotein HRP diluted to 0.05 ng/μL (1.25 × 10?13 mol, 100 μL), tryptic digest of HRP and nonglycosylated BSA up to the ratio of 1:120 w/w and the real complex sample human serum with 103 unique N‐glycosylation peptides of 46 different glycoproteins enriched.  相似文献   

20.
In a variety of disease settings the expression of the endothelial selectins E- and P-selectin appears to be increased. This feature makes these molecules attractive targets around which to design directed drug-delivery schemes. One possible approach for achieving such delivery is to use polymeric biodegradable microspheres bearing a humanized monoclonal antibody (MAb) for E- and P-selectin, MAb HuEP5C7.g2. Perhaps the simplest technique for "coupling" HuEP5C7.g2 to the microspheres is via nonspecific adsorption. Previous studies suggest, however, that the adsorption of proteins onto microspheres fabricated in the presence of a stabilizer such as poly(vinyl alcohol) (PVA) is limited. It is unclear to what extent this limited level of adsorbed HuEP5C7.g2 would be able to support adhesion to E- and P-selectin under flow conditions. To explore this issue, we prepared microspheres from the biodegradable polymer, poly(epsilon-caprolactone) (PCL), using a single emulsion process and PVA as a stabilizer. We then incubated the PCL microspheres with HuEP5C7.g2 and studied the adhesion of the resulting HuEP5C7.g2 microspheres to E- and P-selectin under in vitro flow conditions. We found that the HuEP5C7.g2 PCL microspheres exhibit specific adhesion to Chinese hamster ovary cells stably expressing P-selectin (CHO-P) and 4-h IL-1beta-activated human umbilical vein endothelial cells (HUVEC). In contrast, HuEP5C7.g2 PCL microspheres exhibit little adhesion to parental CHO cells or unactivated HUVEC. The attachment efficiency to the selectin substrates was quite low, with appreciable attachment occurring only at low shear (0.3 dyn/cm(2)). Other supporting data strongly suggest that the limited attachment efficiency is due to a low level of HuEP5C7.g2 adsorbed to the PCL microspheres. Although the attachment was limited, a significant percentage of the HuEP5C7.g2 PCL microspheres were able to remain adherent at relatively high shear (8 dyn/cm(2)). Combined, our data suggest that HuEP5C7.g2 PCL microspheres exhibit selective limited adhesion to cellular substrate expressing E- and P-selectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号