首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wei R  Cheng L  Zheng M  Cheng R  Meng F  Deng C  Zhong Z 《Biomacromolecules》2012,13(8):2429-2438
Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising for tumor-targeted anticancer drug delivery.  相似文献   

3.
目的:制备叶酸介导的普兰多糖-阿霉素聚合物前药(FA-MP-DOX),实现阿霉素药物的靶向控制释放。方法:将普鲁兰多糖用马来酸酐进行修饰后,通过酰胺键键合阿霉素制备得到普鲁兰多糖-阿霉素(MP-DOX),继而酯键键合叶酸制备得到叶酸介导的普鲁兰多糖-阿霉素聚合物前药(FA-MP-DOX)。红外光谱、核磁共振光谱表征聚合物药物的结构,动态透析法模拟体外释药特性,监测不同pH值聚合物药物中阿霉素的释药特性,同时采用人口腔表皮样癌细胞(KB细胞)测定聚合物药物体系的细胞毒性。结果:①经核磁共振表征FA-MP-DOX聚合物合成完成。②在pH2.5、pH5.0及pH7.4的PBS缓冲体系16h中,阿霉素药物累积释放率分别为49.1%,30.3%和15.3%,证实FA-MP-DOX中阿霉素的释放具有pH依赖性。③细胞实验证实FA-MP-DOX的细胞毒性高于阿霉素和MP-DOX。结论:FA-MP-DOX聚合物药物有望成为阿霉素智能型控释和靶向性药物载体。  相似文献   

4.
Thermo-responsive nanogels from poly(l-lactide)-g-pullulan (PLP1 and 2) copolymers with different lactide contents were investigated as an anticancer drug delivery carrier. The phase transition temperature of PLP 1 with lower lactide content in distilled water showed around 35 °C. Upon adding 0.15 M NaCl to PLP 1, a significant difference in the transmittance was observed when comparing the non-additive salt condition. The total amount of released doxorubicin (DOX) from the DOX-loaded PLP nanogels increased with increasing temperature for 50 h. A noticeable difference in the initial release by PLP 1 was observed between 37 and 42 °C. In the 50% inhibitory concentration (IC50) analysis, the IC50 values of DOX released from PLP 1 were approximately 5.9 and 9.3 μg/mL at 37 and 42 °C, respectively. The results suggest that self-assembled PLP nanogels, by means of a triggering temperature, can be used as a long-term drug delivery system in cancer treatments.  相似文献   

5.
Na K  Lee ES  Bae YH 《Bioconjugate chemistry》2007,18(5):1568-1574
The principal objective of this study was to fabricate doxorubicin-loaded self-organized nanogels composed of hydrophobized pullulan (PUL)-Nalpha-Boc-L-histidine (bHis) conjugates. Their responses to tumor extracellular pH (pHe) were determined, and they were also evaluated with regard to their anticancer efficacy against breast cancer cell lines (MCF-7). bHis was grafted to a PUL-deoxycholic acid (DO) conjugate (PUL-DO) via an ester linkage. PUL-DO/bHis conjugates with two different degrees of bHis substitutions (PUL-DO/bHis36 and PUL-DO/bHis78) were synthesized. PUL-DO/bHis nanogels formed via dialysis at a pH of 8.5 evidenced larger particle sizes (<140 nm) and lower critical aggregation concentrations (CACs) than did the PUL-DO nanogels (90 nm). The pH-dependent CAC of PUL-DO/bHis78 changed dramatically, from 1.2 microg/mL at pH 8.5, to 10 at 7.0, and to 660 at 6.2. A similar tendency in pH-dependent size was also noted. The ionization of the imidazole ring in bHis is principally responsible for pH dependency. The bHis moieties function as a switching tool responding to external pH. Doxorubicin (DOX)-loaded nanogels were assessed for pH-dependent releasing kinetics. The release rate of DOX from the PUL-DO/bHis78 nanogels increased significantly with reductions in pH. This resulted in increased cytotoxicity (30% cell viability at a dose of 10 microg/mL DOX equivalent) against sensitive MCF-7 cells at a pH of 6.8 and low cytotoxicity at pH 7.4 (65% cell viability at an identical dose). The results show that PUL-DO/bHis nanogels may potentially be employed as anti-tumor drug carriers.  相似文献   

6.
When used as nanosized carriers, liposomes enable targeted delivery and decrease systemic toxicity of antitumor agents significantly. However, slow unloading of liposomes inside cells diminishes the treatment efficiency. The problem could be overcome by the adoption of lipophilic prodrugs tailored for incorporation into lipid bilayer of liposomes. We prepared liposomes of egg yolk phosphatidylcholine and yeast phosphatidylinositol bearing a diglyceride conjugate of an antitumor antibiotic doxorubicin (a lipophilic prodrug, DOX-DG) in the membrane to study how these formulations interact with tumor cells. We also prepared liposomes of rigid bilayer-forming lipids, such as a mixture of dipalmitoylphosphatidylcholine and cholesterol, bearing DOX in the inner water volume, both pegylated (with polyethylene glycol (PEG) chains exposed to water phase) and non-pegylated. Efficiency of binding of free and liposomal doxorubicin with tumor cells was evaluated in vitro using spectrofluorimetry of cell extracts and flow cytometry. Intracellular traffic of the formulations was investigated by confocal microscopy; co-localization of DOX fluorescence with organelle trackers was estimated. All liposomal formulations of DOX were shown to distribute to organelles retarding its transport to nucleus. Intracellular distribution of liposomal DOX depended on liposome structure and pegylation. We conclude that the most probable mechanism of the lipophilic prodrug penetration into a cell is liposome-mediated endosomal pathway.  相似文献   

7.
Pluronic mimicking poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer having multiple hydroxyl groups in the PPO middle segment (core-functionalized Pluronic: CF-PLU) was synthesized for conjugation of doxorubicin (DOX). DOX was conjugated on the multiple hydroxyl groups of CF-PLU via an acid-labile hydrazone linkage (CF-PLU-DOX). In aqueous solution, CF-PLU-DOX copolymers self-assembled to form a core/shell-type micelle structure consisting of a hydrophobic DOX-conjugated PPO core and a hydrophilic PEO shell layer. The conjugated DOX from CF-PLU-DOX micelles was released out more rapidly at pH 5 than pH 7.4, indicating that the hydrazone linkage was cleaved under acidic condition. CF-PLU-DOX micelles exhibited greatly enhanced cytotoxicity for MCF-7 human breast cancer cells compared to naked DOX, while CF-PLU copolymer itself showed extremely low cytotoxicity. Flow cytometry analysis revealed that the extent of cellular uptake for CF-PLU-DOX micelles was greater than free DOX. Confocal image analysis also showed that CF-PLU-DOX micelles had a quite different intracellular distribution profile from free DOX. CF-PLU-DOX micelles were mainly distributed in the cytoplasm, endosomal/lysosomal vesicles, and nucleus, while free DOX was localized mainly within the nucleus, suggesting that CF-PLU-DOX micellar formulation might be advantageously used for overcoming the multidrug resistance (MDR) effect, which gradually develops in many tumor cells during repeated drug administration.  相似文献   

8.
目的:制备与表征还原可降解的聚磺酸甜菜碱型纳米水凝胶,利用该纳米递药系统包载阿霉素(DOX)并初步评价其抗肿瘤性能。方法:利用回流沉淀聚合的方法合成含二硫键的聚磺酸甜菜碱甲基丙烯酸酯(PSBMA)纳米水凝胶及不含二硫键的PSBMA纳米凝胶(nd-PSBMA);通过粒度仪和透射电镜考察两种纳米水凝胶的粒径、形态以及稳定性;通过考察谷胱甘肽(GSH)对纳米凝胶溶液相对浊度的影响以评价还原环境对两种纳米凝胶的还原可降解性;利用纳米凝胶包载阿霉素(DOX),考察载药凝胶在GSH中的释药行为,并初步评价其对A549肿瘤细胞的杀伤作用。结果:以N, N'-双丙烯酰胱胺为交联剂制备了含二硫键的PSBMA纳米凝胶,其粒径在180~200 nm;同时以N, N'-双丙烯酰胺为交联剂制备了不含二硫键的n-PSBMA纳米凝胶。两种纳米凝胶与小鼠血清共孵育7天水合粒径仍无明显变化,表明磺酸甜菜碱型纳米凝胶具有良好的抗蛋白吸附能力。此外,PSBMA纳米凝胶在GSH溶液中迅速地降解,且降解速度与GSH浓度呈正相关;而nd-PSBMA纳米凝胶在GSH溶液中几乎不降解。载DOX的PSBMA纳米凝胶可在GSH作用下快速的释放药物而载DOX的nd-PSBMA纳米凝胶在GSH作用下缓慢的释放药物;体外细胞实验显示空白纳米凝胶和载药nd-PSBMA对A549细胞无明显毒性作用,但载DOX的PSBMA纳米凝胶可高效地杀死A549肿瘤细胞,其药效与游离DOX相仿。结论:还原可降解的PSBMA纳米水凝胶有望成为智能型控释药物载体。  相似文献   

9.
目的:化学全合成聚苹果酸(poly(β-malic acid),PMLA),将其作为高分子药物载体,制备聚苹果酸-羟喜树碱前药(PMLA-HCPT)。研究其体外释药特点和体外细胞毒性。方法:以L-天冬氨酸为原料,通过化学方法全合成PMLA,通过酰胺键键合羟基喜树碱(HCPT)。通过红外光谱、核磁共振光谱表征该前药的结构,利用体外动态透析的方法模拟体外释药特点,用高效液相色谱法测定不同pH值聚合物药物中前喜树碱的释药特性。采用人卵巢癌HO-8910细胞系研究该前药的体外毒性。结果:①经核磁共振表征PMLA-HCPT前药合成完成。②在pH 5.6、pH 6.8及pH 7.4的PBS缓冲体系16 h中,羟喜树碱药物累积释放率分别为76.8%,47.2%和18.1%,证实PMLA-HCPT中羟喜树碱的释放具有pH依赖性。③细胞实验证实PMLA-HCPT的细胞毒性和游离的HCPT相比没有降低。结论:PMLA是一种良好的药物载体材料,PMLA-HCPT有望成为具有pH敏感性的聚合物前药。  相似文献   

10.
The objective of this study was to develop new self-organized nanogels as a means of drug delivery in patients with cancer. Pullulan (PUL) and deoxycholic acid (DOCA) were conjugated through an ester linkage between the hydroxyl group in PUL and the carboxyl group in DOCA. Three types of PUL/DOCA conjugates were obtained, differing in the number of DOCA substitutions (DS; 5, 8, or 11) per 100 PUL anhydroglucose units. The physicochemical properties of the resulting nanogels were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of DS 11 was the smallest (approx. 100 nm), and the size distribution was unimodal. To determine the organizing behavior of these conjugates, we calculated their critical aggregation concentrations (CACs) in a 0.01-M phosphate buffered saline solution. They were 10.5×10−4 mg/mL, 7.2×10−4 mg/mL, and 5.6×10−4 mg/mL for DS 5, 8, and 11, respectively. This indicates that DOCA can serve as a hydrophobic moiety to create self-organized nanogels. To monitor the drug-releasing behavior of these nanogels, we loaded doxorubicin (DOX) onto the conjugates. The DOX-loading efficiency increased with the degree of DOCA substitution. The release rates of DOX from PUL/DOCA nanogels varied inversely with the DS. We concluded that the PUL/DOCA nanogel has some potential for use as an anticancer drug carrier because of its low CAC and satisfactory drug-loading capacity.  相似文献   

11.
Lee SJ  Min KH  Lee HJ  Koo AN  Rim HP  Jeon BJ  Jeong SY  Heo JS  Lee SC 《Biomacromolecules》2011,12(4):1224-1233
A biocompatible, robust polymer micelle bearing pH-hydrolyzable shell cross-links was developed for efficient intracellular delivery of doxorubicin (DOX). The rationally designed triblock copolymer of poly(ethylene glycol)-poly(L-aspartic acid)-poly(L-phenylalanine) (PEG-PAsp-PPhe) self-assembled to form polymer micelles with three distinct domains of the PEG outer corona, the PAsp middle shell, and the PPhe inner core. Shell cross-linking was performed by the reaction of ketal-containing cross-linkers with Asp moieties in the middle shells. The shell cross-linking did not change the micelle size and the spherical morphology. Fluorescence quenching experiments confirmed the formation of shell cross-linked diffusion barrier, as judged by the reduced Stern-Volmer quenching constant (K(SV)). Dynamic light scattering and fluorescence spectroscopy experiments showed that shell cross-linking improved the micellar physical stability even in the presence of micelle disrupting surfactants, sodium dodecyl sulfate (SDS). The hydrolysis kinetics study showed that the hydrolysis half-life (t(1/2)) of ketal cross-links was estimated to be 52 h at pH 7.4, whereas 0.7 h at pH 5.0, indicating the 74-fold faster hydrolysis at endosomal pH. Ketal cross-linked micelles showed the rapid DOX release at endosomal pH, compared to physiological pH. Confocal laser scanning microscopy (CLSM) showed that ketal cross-linked micelles were taken up by the MCF-7 breast cancer cells via endocytosis and transferred into endosomes to hydrolyze the cross-links by lowered pH and finally facilitate the DOX release to inhibit proliferation of cancer cells. This ketal cross-linked polymer micelle is promising for enhanced intracellular delivery efficiency of many hydrophobic anticancer drugs.  相似文献   

12.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-d), or 2-nitrooxyethyl (12a-d), (*)NO-donor moiety is attached directly to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. The 2-nitrooxyethyl ester prodrugs (12a-d) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.07-2.8 microM range). All compounds released a low amount of (*)NO upon incubation with phosphate buffer (PBS) at pH 7.4 (1.0-4.8% range). In comparison, the percentage (*)NO released was significantly higher (76.2-83.0% range) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum, or moderately higher (7.6-10.1% range) when the nitrooxyethyl ester prodrugs were incubated in the presence of L-cysteine. These incubation studies suggest that both (*)NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases in the case of the diazen-1-ium-1,2-diolate esters (11a-d), or interaction with systemic thiols in the case of the nitrate esters (12a-d). O(2)-Acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (E)-3-(4-methanesulfonylphenyl)-2-phenylacrylate (11a) released 83% of the theoretical maximal release of 2 molecules of (*)NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester anti-inflammatory/(*)NO donor prodrugs offer a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

13.
Wang YC  Wang F  Sun TM  Wang J 《Bioconjugate chemistry》2011,22(10):1939-1945
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. The intracellular accumulation of drug and the intracellular release of drug molecules from the carrier could be the most important barriers for nanoscale carriers in overcoming MDR. We demonstrated that the redox-responsive micellar nanodrug carrier assembled from the single disulfide bond-bridged block polymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-SS-PEEP) achieved more drug accumulation and retention in MDR cancer cells. Such drug carrier rapidly released the incorporated doxorubicin (DOX) in response to the intracellular reductive environment. It therefore significantly enhanced the cytotoxicity of DOX to MDR cancer cells. It was demonstrated that nanoparticular drug carrier with either poly(ethylene glycol) or poly(ethyl ethylene phosphate) (PEEP) shell increased the influx but decreased the efflux of DOX by the multidrug resistant MCF-7/ADR breast cancer cells, in comparison with the direct incubation of MCF-7/ADR cells with DOX, which led to high cellular retention of DOX. Nevertheless, nanoparticles bearing PEEP shell exhibited higher affinity to the cancer cells. The shell detachment of the PCL-SS-PEEP nanoparticles caused by the reduction of intracellular glutathione significantly accelerated the drug release in MCF-7/ADR cells, demonstrated by the flow cytometric analyses, which was beneficial to the entry of DOX into the nuclei of MCF-7/ADR cells. It therefore enhanced the efficiency in overcoming MDR of cancer cells, which renders the redox-responsive nanoparticles promising in cancer therapy.  相似文献   

14.
Bacterial magnetosomes (BMs) are commonly used as vehicles for certain enzymes, nucleic acids and antibodies, although they have never been considered drug carriers. To evaluate the clinical potential of BMs extracted from Magnetospirillum gryphiswaldense in cancer therapy, doxorubicin (DOX) was loaded onto the purified BMs at a ratio of 0.87 +/- 0.08 mg/mg using glutaraldehyde. The DOX-coupled BMs (DBMs) and BMs exhibited uniform sizes and morphology evaluated by TEM. The diameters of DBMs and BMs obtained by AFM were 71.02 +/- 6.73 and 34.93 +/- 8.24 nm, respectively. The DBMs released DOX slowly into serum and maintained at least 80% stability following 48 h of incubation. In vitro cytotoxic tests showed that the DBMs were cytotoxic to HL60 and EMT-6 cells, manifested as inhibition of cell proliferation and suppression in c-myc expression, consistent with DOX. These observations depicted in vitro antitumor property of DBMs similar to DOX. The approach of coupling DOX to magnetosomes may have clinical potential in anti-tumor drug delivery.  相似文献   

15.
Chen J  Qiu X  Ouyang J  Kong J  Zhong W  Xing MM 《Biomacromolecules》2011,12(10):3601-3611
This study develops novel pH and reduction dual-sensitive micelles for the anticancer drug doxorubicin (DOX) delivery owing to the fact that the tumor tissues show low pH and high reduction environment. These sub-100 nm micelles present a core-shell structure under physiological conditions, but quickly release the loaded drugs responding to acidic and reductive stimuli. With disulfide bonds in each repeat unit of poly(β-amino ester)s, the novel copolymer was synthesized via Michael addition polymerization from 2,2'-dithiodiethanol diacrylate, 4,4'-trimethylene dipiperidine, and methoxy-PEG-NH(2). DOX released faster from micelles in a weakly acidic environment (pH 6.5) than at pH 7.4 or in the presence of a higher concentration (5 mM) of reducing agent (DTT). The release is even more effective in a scenario of both stimuli (pH 6.5 and 5 mM DTT). MTT assay showed that the DOX-loaded micelles had a higher cytotoxicity for HepG2 tumor cells than DOX at higher concentrations, and that blank micelles had a very low cytotoxicity to the tumor cells. Confocal microscopy observation showed that the micelles can be quickly internalized, effectively deliver the drugs into nuclei, and inhibit cell growth. These results present the copolymer as a novel and effective pH and reduction dual-responsive nanocarrier to enhance drug efficacy for cancer cells.  相似文献   

16.
目的:制备聚苹果酸-聚乙二醇-叶酸(PMLA-PEG-FA)纳米共聚物,为构建多功能靶向药物转运系统提供前期工作.方法:配体叶酸(FA)通过α-羟基-ω-醛基聚乙二醇(HO-PEG-CHO)以腙键连接在经过水合肼修饰的聚苹果酸的主链上.核磁共振光谱表征纳米共聚物的结构,动态透析法研究腙键响应不同pH值的断键特性,监测不同pH值共聚物中叶酸的稳定性.并采用SMCC-7721人体肝癌细胞测定该纳米共聚物的细胞毒性.结果:1、经核磁共振表征PMLA-PEG-FA共聚物合成完成.2、在pH5.5、pH6.5及pH7.4的PBS缓冲体系中,6h后配体叶酸累积释放率分别为88.1%,85.3%和41.6%.3、MTT实验证实PMLA-PEG-FA无毒性.结论:PMLA-PEG-FA有望成为智能靶向药物载体.  相似文献   

17.
A novel group of hybrid nitric oxide-releasing anti-inflammatory drugs (11) possessing a 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, or 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, nitric oxide (.NO) donor moiety attached via a one-carbon methylene spacer to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. These ester prodrugs (11) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.94-31.6 microM range). All compounds released .NO upon incubation with phosphate buffer (PBS) at pH 7.4 (3.2-11.3% range). In comparison, the percentage of .NO released was significantly higher (48.6-75.3% range) when these hybrid ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both .NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases. O(2)-[(E)-2-(4-Acetylaminophenyl)-3-(4-methanesulfonylphenyl)acryloyloxymethyl]-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11f) is a moderately potent (IC(50)=0.94 microM) and selective (SI>104) COX-2 inhibitor that released 73% of the theoretical maximal release of two molecules of .NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester .NO-donor prodrugs offer a potential drug design concept for the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular side effects.  相似文献   

18.
Folate-targeted drug delivery has become an alternative therapy for the treatment of various cancers. Folate receptors are known to be responsible for cellular accumulation of folate and folate analogs with high binding affinity. The anthracycline antibiotic doxorubicin has a broad spectrum of antineoplastic action and a correspondingly widespread degree of clinical use. In this work, we aimed to prepare a folate receptor-targeted doxorubicin delivery system to achieve minimal effect of doxorubicin on healthy cells and more cytotoxicity of it on tumor cells. Folate–poly(ethylene glycol)–doxorubicin (FOL-PEG-DOX) nanoconjugate was synthesized through this aim and characterized with nuclear magnetic resonance (NMR), zetasizer, and atomic force microscopy (AFM). Doxorubicin release studies were also performed in vitro. The size of FOL-PEG-DOX was 78.84 nm. The results indicated that doxorubicin release rate from the conjugate was faster at pH 5.0 than pH 7.4 and the amide bond between DOX and PEG was more stable at pH 7.4 than pH 5.0. As a consequence, FOL-PEG-DOX nanoconjugate could be a potentially useful delivery system for folate receptor-positive cancer cells.  相似文献   

19.
Carboxymethyl Assam Bora rice starch (CM-ABRS) was chemically synthesized in non-aqueous medium with the optimum degree of substitution (DS) of 1.23, and physicochemically characterized by FT-IR, DSC, XRD, and SEM analysis. Comparative evaluation of CM-ABRS with native starch (ABRS) for powder flow characteristics, swelling index, apparent solubility, rheological properties, textural properties, and mucoadhesive studies were carried out. The aim of the current work was to investigate the potential of CM-ABRS as a novel carrier for the water-soluble chemotherapeutic, doxorubicin hydrochloride (DOX). Formation of drug/polymer complex (DOX-CM-ABRS) via electrostatic interaction has been evaluated for the controlled release of DOX in three different pH media (phosphate-buffered saline (PBS), pH 7.4, 6.8, and 5.5). In vitro drug release studies illustrated faster release of drug in PBS at pH 5.5 as compared to pH 6.8 and pH 7.4, respectively, indicating the importance of pH-sensitive drug release from the DOX-CM-ABRS complex in malignant tissues.  相似文献   

20.
We have recently validated a macromolecular prodrug strategy for improved cancer chemotherapy based on two features: (a) rapid and selective binding of thiol-reactive prodrugs to the cysteine-34 position of endogenous albumin and (b) acid-sensitive promoted or enzymatic release of the drug at the tumor site [Kratz, F., Warnecke, A., Scheuemann, K., Stockmar, C., Schwab, J., Lazar, P., Druckes, P., Esser, N., Drevs, J., Rognan, D., Bissantz, C., Hinderling, C., Folkers, G., Fichtner, I., and Unger, C. (2002) J. Med. Chem. 45, 5523-33]. In the present work, we developed water-soluble camptothecin (CPT) and doxorubicin (DOXO) prodrugs that incorporate the peptide linker Ala-Leu-Ala-Leu that serves as a substrate for the tumor-associated protease, cathepsin B, which is overexpressed in several solid tumors. Consequently, two albumin-binding prodrugs were synthesized [EMC-Arg-Arg-Ala-Leu-Ala-Leu-Ala-CPT (1) and EMC-Arg-Arg-Ala-Leu-Ala-Leu-DOXO (2) (EMC = 6-maleimidocaproic acid)]. Both prodrugs exhibited excellent water-solubility and bound rapidly and selectively to the cysteine-34 position of endogenous albumin. Further in vitro studies showed that the albumin-bound form of the prodrugs was cleaved specifically by cathepsin B as well as in human tumor homogenates. Major cleavage products were CPT-peptide derivatives and CPT for the CPT prodrug and H-Leu-Ala-Leu-DOXO, H-Leu-DOXO, and DOXO for the doxorubicin prodrug. In vivo, 1 was superior to free camptothecin in an HT-29 human colon xenograft model; the antitumor efficacy of prodrug 2 was comparable to that of free doxorubicin in the M-3366 mamma carcinoma xenograft model at equimolar doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号