首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dhakal S  Yu Z  Konik R  Cui Y  Koirala D  Mao H 《Biophysical journal》2012,102(11):2575-2584
G-quadruplex has demonstrated its biological functions in vivo. Although G-quadruplex in single-stranded DNA (ssDNA) has been well characterized, investigation of this species in double-stranded DNA (dsDNA) lags behind. Here we use chemical footprinting and laser-tweezers-based single-molecule approaches to demonstrate that a dsDNA fragment found in the insulin-linked polymorphic region (ILPR), 5'-(ACA GGGG TGT GGGG)2 TGT, can fold into a G-quadruplex at pH 7.4 with 100 mM K+, and an i-motif at pH 5.5 with 100 mM Li+. Surprisingly, under a condition that favors the formation of both G-quadruplex and i-motif (pH 5.5, 100 mM K+), a unique determination of change in the free energy of unfolding (ΔGunfold) by laser-tweezers experiments provides compelling evidence that only one species is present in each dsDNA. Under this condition, molecules containing G-quadruplex are more stable than those with i-motif. These two species have mechanical stabilities (rupture force≥17 pN) comparable to the stall force of RNA polymerases, which, from a mechanical perspective alone, could justify a regulatory mechanism for tetraplex structures in the expression of human insulin.  相似文献   

2.
3.
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.  相似文献   

4.
5.
Particular guanine rich nucleic acid sequences can fold into stable secondary structures called G-quadruplexes. These structures have been identified in various regions of the genome that include the telomeres, gene promoters and UTR regions, raising the possibility that they may be associated with biological function(s). Computational analysis has predicted that intramolecular G-quadruplex forming sequences are prevalent in the human genome, thus raising the desire to differentially recognize genomic G-quadruplexes. We have employed antibody phage display and competitive selection techniques to generate a single-chain antibody that shows >1000-fold discrimination between G-quadruplex and duplex DNA, and furthermore >100-fold discrimination between two related intramolecular parallel DNA G-quadruplexes. The amino acid sequence composition at the antigen binding site shows conservation within the light and heavy chains of the selected scFvs, suggesting sequence requirements for G-quadruplex recognition. Circular dichroism (CD) spectroscopic data showed that the scFv binds to the prefolded G-quadruplex and does not induce G-quadruplex structure formation. This study demonstrates the strongest discrimination that we are aware of between two intramolecular genomic G-quadruplexes.  相似文献   

6.
A perylene ligand, N,N-bis-(1-aminopropyl-3-propylimidazol salt)-3,4,9,10-perylene tetracarboxylic acid diimide ligand (PDI), which consisted of π-conjugated perylene moiety and hydrophilic side chains with positively charged imidazole rings, was used to wrap G-quadruplex for fluorescence turn-on K(+) recognition. Electrostatic attraction between PDI's positively charged imidazole rings and DNA's negatively charged phosphate backbones enabled PDI to accumulate on DNA. Upon trapping K(+), these G-rich DNA sequences transitioned to G-quadruplex. Subsequently, PDI ligands wrapped G-quadruplex, in which the flat aromatic core of PDI ligand interacted with G-quartet through π-π stacking and the side chains were positioned in grooves through electrostatic interactions. Consequently, the interaction mode change and conformational transition from PDI stacked G-sequence to PDI wrapped G-quadruplex led to PDI fluorescence enhancement, which was readily monitored as the detection signal. This strategy excluded the sequence tagging step and exhibited high selectivity and sensitivity towards K(+) ion with the linear detection range of 10-150nM. Besides, PDI ligands may hold diagnostic and therapeutic application potentials to human telomere and cancer cells.  相似文献   

7.

Background

Nucleophosmin (NPM1, B23) is a multifunctional protein that is involved in a variety of fundamental biological processes. NPM1/B23 deregulation is implicated in the pathogenesis of several human malignancies. This protein exerts its functions through the interaction with a multiplicity of biological partners. Very recently it is has been shown that NPM1/B23 specifically recognizes DNA G-quadruplexes through its C-terminal region.

Methods

Through a rational dissection approach of protein here we show that the intrinsically unfolded regions of NPM1/B23 significantly contribute to the binding of c-MYC G-quadruplex motif. Interestingly, the analysis of the ability of distinct NPM1/B23 fragments to bind this quadruplex led to the identifications of distinct NPM1/B23-based peptides that individually present a high affinity for this motif.

Results

These results suggest that the tight binding of NPM1/B23 to the G-quadruplex is achieved through the cooperation of both folded and unfolded regions that are individually able to bind it. The dissection of NPM1/B23 also unveils that its H1 helix is intrinsically endowed with an unusual thermal stability.

Conclusions

These findings have implications for the unfolding mechanism of NPM1/B23, for the G-quadruplex affinity of the different NPM1/B23 isoforms and for the design of peptide-based molecules able to interact with this DNA motif.

General observation

This study sheds new light in the molecular mechanism of the complex NPM1/G-quadruplex involved in acute myeloid leukemia (AML) disease.  相似文献   

8.
Monofunctional conjugates of 15-mer triplex-forming oligonucleotide (TFO) with covalently attached bleomycin A5 residue at the 5′-end (Blm-p15) were synthesized. Bifunctional conjugates of TFO containing, in addition to Blm, the residues of intercalator 6-chloro-2-methoxy-9-aminoacridine (Acr) or N-(2-hydroxyethyl)phenazinium (Phn) were obtained for the first time. The Acr and Phn residues were attached to the 3′-phosphate group of TFO through L1 and L2 linkers, respectively, resulting in the compounds Blmp15pL1-Acr and Blm-p15pL2-Phn. The values of dissociation constants of the corresponding triplexes were evaluated using the gel retardation method. The Acr residue in Blm-p15pL1-Acr was shown to enhance the stability of the formed triplex by one order of magnitude. It was demonstrated that all synthesized conjugates are capable of specifically and nonspecifically damaging a target DNA, forming direct breaks and alkaline-labile sites. The extent of the specific cleavage of the target DNA was 15% in the case of a fivefold excess of the conjugates over the DNA duplex. The site-specific triplex-mediated cleavage of a target DNA was shown for the first time to occur predominantly (>90%) with the formation of the direct breaks of both DNA strands. The results show the availability of bleomycin-containing oligonucleotides as antigene compounds.  相似文献   

9.
We have investigated the time-dependent strand displacement activity of several targets with double-stranded DNA probes (dsProbes) of varying affinity. Here, the relative affinity of various dsProbes is altered through choices in hybridization length (11-15 bases) and the selective inclusion of center mismatches in the duplexes. While the dsProbes are immobilized on microspheres, the soluble, 15 base-long complementary sequence is presented either alone as a short target strand or as a recognition segment embedded within a longer target strand. Compared to the short target, strand displacement activity of the longer targets is slower, but still successful. Additionally, the longer targets exhibit modest differences in the observed displacement rates, depending on the location of recognition segment within the long target. Overall, our study demonstrates that the kinetics of strand displacement activity can be tuned through dsProbe sequence design parameters and is only modestly affected by the location of the complementary segment within a longer target strand.  相似文献   

10.
11.
It has been proposed that guanine-rich DNA forms four-stranded structures in vivo called G-quadruplexes or G4 DNA. G4 DNA has been implicated in several biological processes, but tools to study G4 DNA structures in cells are limited. Here we report the development of novel murine monoclonal antibodies specific for different G4 DNA structures. We show that one of these antibodies designated 1H6 exhibits strong nuclear staining in most human and murine cells. Staining intensity increased on treatment of cells with agents that stabilize G4 DNA and, strikingly, cells deficient in FANCJ, a G4 DNA-specific helicase, showed stronger nuclear staining than controls. Our data strongly support the existence of G4 DNA structures in mammalian cells and indicate that the abundance of such structures is increased in the absence of FANCJ. We conclude that monoclonal antibody 1H6 is a valuable tool for further studies on the role of G4 DNA in cell and molecular biology.  相似文献   

12.
Ligands specific to bioactive molecules play important roles in biomedical researches and applications, such as biological assay, diagnosis and therapy. Systemin is a peptide hormone firstly identified in plant. In this paper we report the selection of a group of DNA aptamers that can specifically bind to systemin. Through comparing the predicted secondary structures of all the aptamers, a hairpin structure with G-rich loop was determined to be the binding motif of these aptamers. The G-rich loop region of this binding motif was further characterized to fold into an antiparallel G-quadruplex by truncation-mutation assay and CD spectrum. The apparent equilibrium dissociation constant (K(d)) of one strong binding sequence (S-5-1) was measured to be 0.5 μM. The specificity assay shows that S-5-1 strongly bind to whole systemin, weakly bind to truncated or mutated systemin and does not bind to the scrambled peptide with the same amino acid composition as systemin. The high affinity and specificity make S-5-1 hold potentials to serve as a molecular ligand applied in detection, separation and functional investigation of systemin in plants.  相似文献   

13.
G-quadruplex DNA structures--variations on a theme   总被引:11,自引:0,他引:11  
To be functional, nucleic acids need to adopt particular three-dimensional structures. For a long time DNA was regarded as a rigid and passive molecule with the sole purpose to store genetic information, but experimental data has now accumulated that indicates the full dynamic repertoire of this macromolecule. During the last decade, four-stranded DNA structures known as G-quadruplexes, or DNA tetraplexes, have emerged as a three-dimensional structure of special interest. Motifs for the formation of G-quadruplex DNA structures are widely dispersed in eukaryotic genomes, and are abundant in regions of biological significance, for example, at telomeres, in the promoters of many important genes, and at recombination hotspots, to name but a few in man. Here I explore the plethora of G-quadruplex DNA structures, and discuss their possible biological functions as well as the proteins that interact with them.  相似文献   

14.
On the basis of growing evidence for G-quadruplex DNA structures in genomic DNA and the presumed need to resolve these structures for DNA replication, the G-quadruplex DNA unwinding ability of a prototypical replicative helicase, SV40 large T-antigen (T-ag), was investigated. Here, we demonstrate that this G-quadruplex helicase activity is robust and comparable to the duplex helicase activity of T-ag. Analysis of the SV40 genome demonstrates the presence of sequences that may form intramolecular G-quadruplexes, which are the presumed natural substrates for the G-quadruplex helicase activity of T-ag. A number of G-quadruplex-interactive agents as well as new perylene diimide (PDI) derivatives have been investigated as inhibitors of both the G-quadruplex and the duplex DNA helicase activities of T-ag. A unique subset of these G-quadruplex-interactive agents inhibits the G-quadruplex DNA unwinding activity of T-ag, relative to those reported to inhibit G-quadruplex DNA unwinding by RecQ-family helicases. We also find that certain PDIs are both potent and selective inhibitors of the G-quadruplex DNA helicase activity of T-ag. Surface plasmon resonance and fluorescence spectroscopic G-quadruplex DNA binding studies of these T-ag G-quadruplex helicase inhibitors have been carried out, demonstrating the importance of attributes in addition to binding affinity for G-quadruplex DNA that may be important for inhibition. The identification of potent and selective inhibitors of the G-quadruplex helicase activity of T-ag provides tools for probing the specific role of this activity in SV40 replication.  相似文献   

15.
DNA packaging by the double-stranded DNA bacteriophages   总被引:50,自引:0,他引:50  
W C Earnshaw  S R Casjens 《Cell》1980,21(2):319-331
  相似文献   

16.
17.
Specific interactions of distamycin with G-quadruplex DNA   总被引:1,自引:1,他引:1       下载免费PDF全文
Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the terminal G-quartets and contacting the flanking bases. These results demonstrate the utility of distamycin as a probe of G4 DNA–protein interactions and show that there are (at least) two distinct modes of protein–G4 DNA recognition which can be distinguished by sensitivity to distamycin.  相似文献   

18.
The Y-family DNA polymerase Rev1 is required for successful replication of G-quadruplex DNA (G4 DNA) in higher eukaryotes. Here we show that human Rev1 (hRev1) disrupts G4 DNA structures and prevents refolding in vitro. Nucleotidyl transfer by hRev1 is not necessary for mechanical unfolding to occur. hRev1 binds G4 DNA substrates with Kd,DNA values that are 4–15-fold lower than those of non-G4 DNA substrates. The pre-steady-state rate constant of deoxycytidine monophosphate (dCMP) insertion opposite the first tetrad-guanine by hRev1 is ∼56% as fast as that observed for non-G4 DNA substrates. Thus, hRev1 can promote fork progression by either dislodging tetrad guanines to unfold the G4 DNA, which could assist in extension by other DNA polymerases, or hRev1 can prevent refolding of G4 DNA structures. The hRev1 mechanism of action against G-quadruplexes helps explain why replication progress is impeded at G4 DNA sites in Rev1-deficient cells and illustrates another unique feature of this enzyme with important implications for genome maintenance.  相似文献   

19.
Telomeric DNA can fold into four-stranded structures known as G-quadruplexes. Here we investigate the ability of G-quadruplex DNA to serve as a substrate for recombinant Tetrahymena and native Euplotes telomerase. Inter- and intramolecular G-quadruplexes were gel-purified and their stability examined using native gel electrophoresis, circular dichroism (CD) and thermal denaturation. While intermolecular G-quadruplexes were highly stable, they were excellent substrates for both ciliate telomerases in primer extension assays. In contrast, intramolecular G-quadruplexes formed in K+ exhibited biphasic unfolding and were not extended by ciliate telomerases. Na+-stabilised intramolecular G-quadruplexes were extended by telomerase owing to their rapid rate of dissociation. The Tetrahymena telomerase protein component bound to inter- but not intramolecular K+-stabilised G-quadruplexes. This study provides evidence that parallel intermolecular G-quadruplexes can serve as substrates for telomerase in vitro, their extension being mediated through direct interactions between this higher-order structure and telomerase.  相似文献   

20.
G-quadruplex nucleic acids are emerging as therapeutic targets for small molecules referred to as small-molecule G-quadruplex ligands. The porphyrin H2-TMPyP4 was early reported to be a suitable motif for G-quadruplex DNA recognition. It probably binds to G-quadruplex nucleic acid through π-π stacking with the external G-quartets. We explored chemical modifications of this porphyrin such as insertion of various metal ions in the centre of the aromatic core and addition of bulky substituents that may improve the specificity of the compound toward G-quadruplex DNA. Porphyrin metallation, affording a G4-ligand with two symmetric faces, allowed the conclusion that the presence of an axial water molecule perpendicular to the aromatic plane lowered but did not hamper π-π stacking interactions between the aromatic parts of the ligand on the one hand and the external G-quartet on the other. The charge introduced in the centre of the porphyrin had little influence on binding. Thus, the ionic channel in the centre of G-quadruplex nucleic acids was not found to provide clear additional molecular clues for G-quadruplex nucleic acids targeting by porphyrins tested in the present study. Furthermore, we confirmed the unique G-quadruplex selectivity of a porphyrin modified with four bulky substituents at the meso positions and showed that although the compound is not “drug-like” it was capable of entering cells in culture and mediated some of the typical cellular effects of small-molecule G-quadruplex ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号