首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous histochemical and biochemical localizations of alkaline phosphatase in Bacillus licheniformis MC14 have shown that the membrane-associated form of the enzyme is located on the inner surface of the cytoplasmic membrane, and soluble forms are located in the periplasmic space and in the growth medium. The distribution of salt-extractable alkaline phosphatase on the surfaces of the cytoplasmic membrane of B. licheniformis MC14 was determined by using lactoperoxidase-125I labeling techniques. Cells harvested during rapid alkaline phosphatase production were converted to protoplasts or lysed protoplasts and labeled. Analysis of the data obtained indicated that 30% of the salt-extractable, membrane-associated alkaline phosphatase was located on the outer surface of the cytoplasmic membrane, whereas 70% of the membrane-associated enzyme was localized on the inner surface. Controls for protoplast integrity (release of tritiated thymidine or examination of cytoplasmic proteins for label content) indicated excellent protoplast stability. Controls indicated that chemical labeling was not a factor in the apparent distribution of alkaline phosphatase on the membrane. These results support the previously reported histochemical localization of alkaline phosphatase on the membrane inner surface. The presence of alkaline phosphatase on the membrane outer surface is reasonable, considering the soluble forms of the enzyme found in the periplasmic region and in the culture medium.  相似文献   

2.
Several unknown Escherichia coli genes for different species of acid phosphatase were cloned in vivo with the plasmid Mu dII4042. When present in a multicopy state, each gene promoted hydrolysis of p-nitrophenyl-phosphate at acidic pH. Among seven recombinant clones that encoded periplasmic acid phosphatase activities, five different genes could be distinguished by the pH optimum and substrate preference for the enzyme and by the restriction enzyme pattern. A 1.7-kilobase recombinant DNA fragment, common to two clones, was inserted into plasmid pBR322 and shown to contain a new gene, agp, which leads to the overexpression of the periplasmic acid glucose-1-phosphatase, a dimer of a 44-kilodalton polypeptide. Fusions of agp to gene phoA deprived of its own signal sequence conferred an alkaline phosphatase-positive phenotype to bacteria, showing the presence of an export signal on agp. The resulting hybrid proteins were characterized by immunoprecipitation with an antiserum directed against purified acid phosphatase or against alkaline phosphatase, showing that agp is the structural gene of the acid phosphatase. The beginning, the orientation, and the end of gene agp on the cloned DNA fragment were determined by the characteristics of such hybrid proteins.  相似文献   

3.
在地衣芽孢杆菌NCIB 6816菌株碱性蛋白酶基因已知序列的基础上,通过设计合适的引物,利用PCR(Polymerase Chain Reaction)技术从地衣芽孢杆菌2709菌株的柒色体DNA中扩增了2709碱性蛋白酶的编码序列。对两个克隆的PCR片段的全序列分析结果显示,2709碱性蛋白酶的编码序列同相应的NCIB 6816序列相比有3%左右的碱基组成差异。由此推定的2709碱性蛋白酶的氨基酸序列肯定了2709碱性蛋白酶属典型的subtilisin Carlsberg类,同时还表明来源于不同地衣芽孢杆菌菌株的subtilisin Carlsberg存在着若干氨基酸组成上的差异。  相似文献   

4.
The 5' regulatory region and the portion of the structural gene coding for the amino-terminal sequence of alkaline phosphatase I (APase I) were isolated from Bacillus licheniformis MC14 using a synthetic oligodeoxynucleotide deduced from the amino acid sequence of the enzyme. The DNA sequence analysis of this region revealed an open reading frame of 129 amino acids containing the amino-terminal sequence of the mature APase protein. The protein sequence was preceded by a putative signal sequence of 32 amino acid residues. The predicted amino acid sequence of the partial APase clone as well as the experimentally determined amino acid sequence of the enzyme indicated that B. licheniformis APase retains the important features conserved among other APases of Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae, and various human tissues. Heterologous expression studies of the promoter using a fusion with the lacZ gene indicated that it functions as a very strong inducible promoter in B. subtilis that is tightly regulated by phosphate concentration.  相似文献   

5.
Bacillus subtilis B7, a mutant which acquired gene amplification of the amyE-tmrB region, showed, as a result, hyperproductivity (about a 5- to 10-fold increase) of alpha-amylase and tunicamycin resistance. The mutational character was transferred to recipient cells by competence transformation. A 14-kilobase (kb) EcoRI chromosomal DNA fragment of strain B7 was found to have the transforming activity. We cloned a 6.4-kb EcoRI fragment on a phage vector lambda Charon 4A through a spontaneous deletion of 7.6 kb from the 14-kb fragment and subcloned a 1.6-kb HindIII fragment on pGR71. The cloned 6.4-kb EcoRI and 1.6-kb HindIII fragments retained the transforming activity of inducing gene amplification of the amyE-tmrB region. At the junction point (J) of the repeating units (16 kb), the tmrB gene was linked to a DNA region (M) located 4 kb upstream of amyE. The essential structure of the cloned, transforming (gene amplification-inducing) DNA was deduced to be that around J. The subcloned 1.6-kb HindIII fragment that retained the transforming activity was shown to be almost solely composed of the tmrB-J-M region. In addition, the DNA sequence around J was determined.  相似文献   

6.
Bacillus subtilis spo0H gene.   总被引:16,自引:15,他引:1       下载免费PDF全文
  相似文献   

7.
Bacterial alkaline phosphatases (APases), except those isolated from Bacillus licheniformis, are approximately 45-kDa proteins while eucaryotic alkaline phosphatases are 60 kDa. To answer the question of whether the apparent 60-kDa alkaline phosphatase from Bacillus licheniformis accurately reflected the size of the protein, the entire gene was analyzed. DNA sequence analysis of the alkaline phosphatase I (APaseI) gene of B. licheniformis MC14 indicated that the gene could code for a 60-kDa protein of 553 amino acids. The deduced protein sequence of APaseI showed about 32% identity to those of B. subtilis APase III and IV and had apparent sequence homologies in the core structure and active sites that are conserved among APases of various sources. The extra carboxy-terminal sequence of APaseI, which made the enzyme bigger than other procaryotic APases, was not homologous to those of eucaryotic APases. The amino acid composition of APaseI was most similar to that of salt-dependent APase among the isozymes of B. licheniformis MC14. Another open reading frame of 261 amino acids was present 142 nucleotide upstream of the APaseI gene and its predicted amino acid sequence showed 68% identity to that of glucose dehydrogenase of B. megaterium.  相似文献   

8.
9.
When membranes of Bacillus licheniformis MC14 were extracted exhaustively with 1 M magnesium, approximately 80% of the membrane-associated alkaline phosphatase (orthophosphoric-monoester phosphohydrolase [alkaline optimum], E.C. 3.1.3.1) was solubilized. The remaining activity could be extracted with a cationic detergent, hexadecylpyridinium chloride, without loss of enzymatic activity. The detergent-extractable alkaline phosphatase was immunoprecipitable with antibody to the salt-extractable alkaline phosphatase or the secreted alkaline phosphatase, had an approximate molecular weight of 60,000, and was localized 100% on the outer surface of the cytoplasmic membrane.  相似文献   

10.
The regulatory genes of alkaline phosphatase, phoS and phoT, of Escherichia coli were cloned on pBR322, initially as an 11.8-kilobase EcoRI fragment. A restriction map of the hybrid plasmid was established. Deletion plasmids of various sizes were constructed in vitro, and the presence of phoS and phoT genes on the cloned DNA fragments was tested by introducing the plasmids into phoS64 and phoT9 strains for complementation tests. One set complemented only phoS64 but not phoT9; the other set complemented only phoT9 but not phoS64. We conclude that phoS64 and phoT9 mutations belong to different complementation groups and probably to different cistrons. The hybrid plasmid with the 11.8-kilobase chromosomal fragment also complemented the phoT35 mutation. A smaller derivative of the hybrid plasmid was constructed in vitro which complemented phoT35 but did not complement phoS64, phoT9, or pst-2. Our results agree with the suggestion that phoT35 lies in a different complementation group from phoS, phoT, or pst-2 (Zuckier and Torriani, J. Bacteriol. 145:1249--1256, 1981). Therefore, we propose to designate phoT35 as phoU. The effect of amplification of phoS or phoT on alkaline phosphatase production was examined. It was found that multiple copies of the phoS gene borne on pBR322 repressed enzyme production even in low-phosphate medium, whether it was introduced into wild-type strains (partially repressed) or phoR (phoR68 or phoR17) strains (fully repressed), whereas the introduction of multicopy plasmids bearing the phoT gene did not affect the inducibility of the enzyme.  相似文献   

11.
T Imanaka  T Himeno    S Aiba 《Journal of bacteriology》1987,169(9):3867-3872
The penicillinase antirepressor gene, penJ, of Bacillus licheniformis ATCC 9945a was cloned in Escherichia coli by using pMB9 as a vector plasmid. The penicillinase gene, penP, its repressor gene, penI, and penJ were encoded on the cloned 5.2-kilobase HindIII fragment of the recombinant plasmid pTTE71. The penJ open reading frame was composed of 1,803 bases and 601 amino acid residues (molecular weight, 68,388). A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site. Since this sequence was located in the 3'-terminal region of the penI gene, penJ might be transcribed together with penI as a polycistronic mRNA from the penI promoter. Frameshift mutations of penJ were constructed in vitro from pTTE71, and the penJ mutant gene was introduced into B. licheniformis by chromosomal recombination. The transformant B. licheniformis U173 (penP+ penI+ penJ) turned out to be uninducible for penicillinase production, whereas the wild-type strain (penP+ penI+ penJ+) was inducible. Only when these three genes (penP, penI, and PenJ) were simultaneously subcloned in Bacillus subtilis did the plasmid carrier exhibit inducible penicillinase production, as did wild-type B. licheniformis. It was concluded that penJ is involved in the penicillinase induction. The regulation of penP expression by penI and penJ is discussed.  相似文献   

12.
G S Dahler  F Barras    N T Keen 《Journal of bacteriology》1990,172(10):5803-5815
A 14-kilobase BamHI-EcoRI DNA fragment cloned from Erwinia chrysanthemi EC16 contained a gene encoding a metalloprotease inhibitor as well as three tandem prt genes encoding metalloproteases. The prt genes were separated from the inhibitor gene by a ca. 4-kilobase region that was necessary for extracellular secretion of the proteases. When individually subcloned downstream from vector promoters, the three prt genes each led to substantial extracellular secretion of the proteases by Escherichia coli cells, provided that the 4-kilobase required region was supplied in cis or trans. One of the protease structural genes, prtC, was sequenced and had high homology to a metalloprotease gene previously described from Serratia species as well as to the prtB gene of E. chrysanthemi B374. Marker exchange mutants of E. chrysanthemi EC16 defective in production of one or all of the extracellular proteases were not impaired in virulence on plant tissue.  相似文献   

13.
A number of clones have been isolated from two Bacillus species which complement the PhoA- phenotype of Escherichia coli mutants under conditions that induce the expression of alkaline phosphatase (APase). These clones were initially thought to carry XPases because the transformed host could hydrolyse a common APase substrate, XP (5-bromo-4-chloro-3-indolyl-phosphate). The sequences of the open reading frames responsible for the phenotypic complementation showed no sequence similarity to ATPases of E. coli, human (bone-liver-kidney, intestinal or placental) or Bacillus. Therefore, these clones were designated as XPA (for X Phosphatase Activity) clones. Four of the clones encoded small (10 kDa), basic, hydrophobic proteins. Two of these, xpaB from B. subtilis 168 and xpaL2 from B. licheniformis MC14, shared 62% identity at both the DNA and the predicted amino acid sequence level. The fact that homologues from two Bacillus strains were cloned indicated that the screen was specific, but not for APase genes. It is clear that phenotypic complementation with cloned DNA from another genus does not ensure the identification of an APase gene. Possible mechanisms for the abnormal phenotypic complementation are discussed.  相似文献   

14.
A DNA fragment of Escherichia coli cloned on pBR322 elevated the production of alkaline phosphatase and phosphate-binding protein in a phoR phoM strain. Nucleotide sequence analysis and enzyme assays revealed that the DNA fragment contained the ackA gene, which codes for acetate kinase. A high gene dosage of ackA was needed to induce the production of alkaline phosphatase and phosphate-binding protein in this strain. Overexpression of ackA elevated the intracellular ATP concentration, an effect that might be related to activation of the phosphate regulon in the phoR phoM strain.  相似文献   

15.
16.
The DNA fragment from bacitracin-producing Bacillus licheniformis strain is cloned on pMX39 vector plasmid in Bacillus subtilis cells. Bacillus subtilis cells carrying the cloned fragment inhibit the growth of bacitracin-sensitive tester strain. The observed inhibition of growth is due to the production by Bacillus subtilis of bacteriocin substance that is identified as bacitracin by TLC-chromatography. In contrast to the data published earlier it is shown that Bacillus subtilis can in fact produce the small amounts of bacitracin. Introduction of the cloned Bacillus licheniformis DNA into Bacillus subtilis cells stimulates this bacitracin production. The restriction site map of the Bacillus licheniformis chromosomal region bearing the cloned fragment is constructed.  相似文献   

17.
Twenty-two Bacillus licheniformis strains, freshly isolated from pasture-land, were studied for the presence of plasmid DNA. Among these strains, 14 were shown to harbor one or more plasmids of different size. Southern-hybridization experiments showed a high homology between all plasmids investigated and a 2.2-kb PvuII/HindIII fragment of pBL1, a B. licheniformis plasmid previously isolated. Three fragments of pBL1, including the 2.2-kb PvuII/HindIII region, were cloned into pJH101 vector. The resulting chimeras were able to transform Bacillus subtilis. The fragment with high homology probably contains the region with the replicative functions of plasmids from B. licheniformis species.  相似文献   

18.
Conjugates of oligonucleotides and alkaline phosphatase have been prepared and used as nonradioactive hybridization probes for the study ofPis3 (=MPI) a gene encoding a proteinase inhibitor fromZea mays. Attachment of the alkaline phosphatase was carried out either at the 5′ or 3′ end of two 25-bp oligonucleotides. Sensitivity of each alkaline phosphatase-oligonucleotide probe was assessed using a chemiluminescent substrate for detection of alkaline phosphatase activity. This sensitive method allows the rapid analysis of genomic clones isolated from aZea mays library and the subsequent characterization of the completePis3 gene without the need for construction of restriction maps for the cloned DNA fragments. This general strategy may be valuable for the identification of any gene for which a limited sequence is known and for location of specific DNA sequences that represent a small region within a larger DNA fragment.  相似文献   

19.
20.
A resident-plasmid cloning system developed for Bacillus subtilis has been used to isolate recombinant plasmids carrying DNA from Bacillus licheniformis which confer alpha-amylase activity on alpha-amylase-negative mutants of B. subtilis. These plasmids contain a 3550-bp insert at the EcoRI site of the plasmid pBD64. Subcloning various lengths of the B. licheniformis DNA has localised the gene to a 2550-bp BclI fragment. We present evidence that the cloned fragment codes for a B. licheniformis heat-stable alpha-amylase with a temperature optimum of 93 degrees C. The foreign gene is expressed efficiently in B. subtilis and is stably maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号