首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors.  相似文献   

2.
Fluorinated phenylcyclopropylamines and alkylamines were examined as inhibitors of recombinant human liver monoamine oxidase A (MAO A) and B (MAO B). For a series of trans- and cis-2-fluoro-2-phenylcyclopropylamine analogues, the presence of fluorine attached to a cyclopropane ring was found to result in an increase in inhibitory activity towards both MAO A and B. In addition, p-substitution of electron-withdrawing groups such as Cl and F in the aromatic ring of the trans-isomers increased the inhibition of both enzymes. (1S,2S)-2-Fluoro-2-phenylcyclopropylamine was a more potent inhibitor of both MAO A and B than was the (1R,2R)-enantiomer, indicating that the presence of fluorine has no influence on the enantioselectivity of MAO inhibition, since a similar effect of stereochemistry has been reported for tranylcypromine. Interestingly, fluorination at the 2-position of 1-phenycyclopropylamine, which is known as a selective inhibitor of MAO B relative to MAO A, reversed the selectivity and resulted in a potent inhibitor selective for MAO A. All inhibitors showed time- and concentration-dependent inhibition for both enzymes, with the exception of trans-2-fluoro-2-phenylcyclopropyl ethylamine, which acts as a competitive and reversible MAO A selective inhibitor.  相似文献   

3.
A series of racemic, diastereoisomeric aryl cyclopropylamines substituted with fluorine in the 2-position and electron-donating and electron-withdrawing groups on the aromatic ring have been prepared. These represent analogues of the classic MAO inhibitor tranylcypromine (trans-2-phenylcyclopropylamine, 1). Their activities as inhibitors of recombinant human liver monoamine oxidases A (MAO A) and B (MAO B) were determined. The trans-compounds were low micromolar inhibitors of both MAO A and MAO B with moderate MAO A selectivity while the less active cis-analogues were MAO B selective. In the trans-series, electron-withdrawing para-substituents increased the potency of MAO A inhibition while electron-donating groups such as methyl or methoxy had no influence on this activity. In contrast, aromatic ring substitution in the trans-series had essentially no effect on the inhibition of MAO B. The corresponding cis-compounds were shown to be 10-100 times less active against MAO A, while trans- and cis-compounds were quite similar in terms of inhibition of MAO B. The best MAO A/MAO B selectivity (7:1) in the trans-series was found for trans-2-fluoro-2-(para-trifluoromethylphenyl)cyclopropylamine (7d), while a 1:27 selectivity was found for cis-2-fluoro-2-(para-fluorophenyl)cyclopropylamine (10c). These results are discussed in connection with the pK(a) and logD values, the mechanism of action of tranylcypromines, and the geometry of the active site of the enzymes.  相似文献   

4.
Molecular dynamics simulations have been performed on three phenylimidazole inhibitor complexes ofP450 cam, utilizing the X-ray structures and the AMBER suite of programs. Compared to their corresponding optimized X-ray structures, very similar features were observed for the 1-phenylimidazole (1-PI) and 2-phenylimidazole (2-PI) complexes during a 100 ps MD simulation. The 1-PI inhibitor binds as a Type II complex with the imidazole nitrogen as a ligand of the heme iron. Analysis of the inhibitor-enzyme interctions during the MD simulations reveals that electrostatic interactions of the imidazole with the heme and van der Waals interactions of the phenyl ring with nearby hydrophobic residues are dominant. By contrast, 2-PI binds as a Type I inhibitor in the substrate binding pocket, but not as a ligand of the iron. The interactions of this inhibitor are qualitatively different from that of the Type II 1-PI, being mainly electrostatic/H-bonding interactions with a bound water and polar residues. Although the third compound, 4-PI, in common with 1-PI, also binds as a Type II inhibitor, with one nitrogen of the imidazole as a ligand to the iron, the MD average binding orientation deviates significantly from the X-ray structure. The most important changes observed include: (1) the rotation of the imidazole ring of this inhibitor by about 90° to enhance electrostatic interactions of the imidazole NH group with the carbonyl group of LEU244, and (2) the rotation of the carbonyl group of ASP251 to form a H-bond with VAL254. An analysis of the H-bonding network surrounding this substrate in the optimized crystal structure revealed that there is no H-bonding partner either for the free polar NH group in the imidazole ring of 4-phenylimidazole or for the polar carbonyl group of the nearby ASP251 residue. The deviation of the dynamically averaged inhibitor-enzyme structure of the 4-PI complex from the optimized crystal structure can therefore be rationalized as a consequence of the optimization of the electrostatic interactions among the polar groups.  相似文献   

5.
The binding of L- and D-phenylalanine and carboxylate inhibitors to cobalt(II)-substituted carboxypeptidase A, Co(II)CPD (E), in the presence and absence of pseudohalogens (X = N3-, NCO-, and NCS-) has been studied by 1H NMR spectroscopy. This technique monitors the proton signals of histidine residues bound to cobalt(II) and is therefore sensitive to the interactions of inhibitors that perturb the coordination sphere of the metal. Enzyme-inhibitor complexes, E.I, E.I2, and E.I.X, each with characteristic NMR features, have been identified. Thus, for example, L-Phe binds close to the metal ion to form a 1:1 complex, whereas D-Phe binds stepwise, first to a nonmetal site and then to the metal ion to form a 2:1 complex. Both acetate and phenylacetate also form 2:1 adducts stepwise with the enzyme, but beta-phenylpropionate gives a 2:1 complex without any detectable 1:1 intermediate. N3-, NCO-, and NCS- generate E.I.X ternary complexes directly with Co(II)CPD.L-Phe and indirectly with the D-Phe and carboxylate inhibitor 2:1 complexes by displacing the second moiety from its metal binding site. The NMR data suggest that when the carboxylate group of a substrate or inhibitor binds at the active site, a conformational change occurs that allows a second ligand molecule to bind to the metal ion, altering its coordination sphere and thereby attenuating the bidentate behavior of Glu-72. The 1H NMR signals also reflect alterations in the histidine interactions with the metal upon inhibitor binding. Isotropic shifts in the signals for the C-4 (c) and N protons (a) of one of the histidine ligands are readily observed in all of these complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A light scattering-based amyloid fibril formation assay was employed to evaluate potential inhibitors of transthyretin (TTR) amyloid fibril formation in vitro. Twenty nine aromatic small molecules, some with homology to flufenamic acid (a known non-steroidal anti-inflammatory drug) were tested to identify important structural features for inhibitor efficacy. The results of these experiments and earlier data suggest that likely inhibitors will have aromatic-based structures with at least two aromatic rings. The ring or fused ring system occupying the outermost TTR binding pocket needs to be substituted with an acidic functional group (e.g. a carboxylic acid) to interact with complimentary charges in the TTR binding site. The promising TTR amyloid fibril inhibitors ranked in order of efficacy are: 2 > 4 approximately 7 > 3 > 9 > 6 > 21.  相似文献   

7.
2H relaxation measurements coupled with multiple specific 2H labeling have provided insight into the molecular dynamics of N-acetyl-D-glucosamine (GlcNAc) inhibitors bound to lysozyme. Deuteron T1 and T2 data for the bound state of methyl alpha- and -beta-GlcNAc 2H-labeled in the glycosidic methyl and C2 positions have been derived from measurements at different enzyme/inhibitor ratios. Rotational correlation times calculated therefrom for the labeled sites indicate, in both cases, tight binding for the sugar ring (tau(b) = 3.0 x 10(-9) s) accompanied by fast internal rotation, about one axis, of the glycosidic methyl groups (tau(r) = 5.5-7.6 x 10(-11) s). The small but consistent difference in the rates of internal rotation for the alpha- and beta-anomeric inhibitors may be indicative of different solution structures of the enzyme-inhibitor complexes.  相似文献   

8.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc(1) complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc(1) complex are not well understood. Atovaquone, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc(1) complexes as surrogates to model the interaction of atovaquone with the bc(1) complexes of the target pathogens and human host. As a first step to identify new cytochrome bc(1) complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc(1) complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc(1) complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

9.
In the course of a fragment screening campaign by in silico docking followed by X-ray crystallography, a novel binding site for migration inhibitory factor (MIF) inhibitors was demonstrated. The site is formed by rotation of the side-chain of Tyr-36 to reveal a surface binding site in MIF that is hydrophobic and surrounded by aromatic side-chain residues. The crystal structures of two small inhibitors that bind to this site and of a quinolinone inhibitor, that spans the canonical deep pocket near Pro-1 and the new surface binding site, have been solved. These results suggest new opportunities for structure-based design of MIF inhibitors.  相似文献   

10.
Two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2, bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine, with competitive inhibitors derived from the following general structure: [formula: see text] X and Y are alkyl chains with various 'reporter groups'. The interactions between the inhibitor and the enzyme were localized by comparison of 2-D nuclear Overhauser effect spectra using protonated and selectively deuterated inhibitors, and inhibitors with groups having easily identifiable chemical shifts. These experiments led us to the following conclusions for the phospholipase A2/inhibitor/micelle complex: i) the His48 C2 ring proton is in close proximity to both the amide proton and the methylene protons at the sn-1 position of the glycerol skeleton of the inhibitor, ii) the acyl chain of the inhibitor at the sn-2 position makes hydrophobic contacts near Phe5, Ile9, Phe22 and Phe106; iii) no interactions between the acyl chain at the sn-1 position and the protein could be identified. Comparison of our results on the enzyme/inhibitor/micelle ternary complex with the crystal structure of the enzyme-inhibitor complex shows that the mode of inhibitor binding is similar. However, in several cases we found indications that the hydrophobic chains of the inhibitors can have multiple conformations.  相似文献   

11.
The crystal structures of four active site-directed thrombin inhibitors, 1-4, in a complex with human alpha-thrombin have been determined and refined at up to 2.0 A resolution using X-ray crystallography. These compounds belong to a structurally novel family of inhibitors based on a 2,3-disubstituted benzo[b]thiophene structure. Compared to traditional active-site directed inhibitors, the X-ray crystal structures of these complexes reveal a novel binding mode. Unexpectedly, the lipophilic benzo[b]thiophene nucleus of the inhibitor appears to bind in the S1 specificity pocket. At the same time, the basic amine of the C-3 side chain of the inhibitor interacts with the mostly hydrophobic proximal, S2, and distal, S3, binding sites. The second, basic amine side chain at C-2 was found to point away from the active site, occupying a location between the S1 and S1' sites. Together, the aromatic rings of the C-2 and C-3 side chains sandwich the indole ring of Trp60D contained in the thrombin S2 insertion loop defined by the sequence "Tyr-Pro-Pro-Trp." [The thrombin residue numbering used in this study is equivalent to that reported for chymotrypsinogen (Hartley BS, Shotton DM, 1971, The enzymes, vol. 3. New York: Academic Press. pp 323-373).] In contrast to the binding mode of more classical thrombin inhibitors (D-Phe-Pro-Arg-H, NAPAP, Argatroban), this novel class of benzo[b]thiophene derivatives does not engage in hydrogen bond formation with Gly216 of the thrombin active site. A detailed analysis of the three-dimensional structures not only provides a clearer understanding of the interaction of these agents with thrombin, but forms a foundation for rational structure-based drug design. The use of the data from this study has led to the design of derivatives that are up to 2,900-fold more potent than the screening hit 1.  相似文献   

12.
The inhibition of papain by N-acetyl-D- and N-acetyl-L-phenylalanyl[1-13C]glycinal was investigated by 13C nuclear magnetic resonance (NMR) spectroscopy. Both the L- and D-aldehyde enantiomers formed thiohemiacetals with papain. The 13C-enriched carbon of the thiohemiacetals formed with the L- and D-aldehydes has chemical shifts at 74.7 and 75.1 ppm, respectively. The difference in chemical shift for the two inhibitor complexes is attributed to each forming a different diastereomeric papain thiohemiacetal. Each enantiomeric inhibitor formed two diastereomeric thiohemiacetals with chiral thiols but produced a single diastereoisomer with papain. It is concluded that with papain thiohemiacetal formation is stereospecific. The D inhibitor is bound only 5-fold less tightly than the L inhibitor, which suggests that in both these inhibitor complexes the phenyl ring of the inhibitor phenylalanine is bound at the S2 hydrophobic pocket of papain. This is supported by computer modeling studies that show that both the N-acetyl-D- and N-acetyl-L-phenylalanine moieties can be separately fitted into the S2 subsite with the phenyl ring of phenylalanine in the S2 hydrophobic pocket. It is concluded that thiohemiacetal formation at S1 (S1 and S1' are the active center amino acid binding sites) is stereospecific with both D and L inhibitors. Computer modeling studies support this showing that, due to steric hindrance between the thiohemiacetal hydroxyl group and the backbone amide nitrogen of serine-24, only one of the two possible thiohemiacetal enantiomers can be formed at the S1 subsite. The thiohemiacetals formed from both the D- and L-aldehyde inhibitors therefore have only one permitted conformation at S1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Aldose reductase (ALR2) belongs to the aldo–keto reductase (AKR) superfamily of enzymes, is the first enzyme involved in the polyol pathway of glucose metabolism and has been linked to the pathologies associated with diabetes. Molecular modelling studies together with binding constant measurements for the four inhibitors Tolrestat, Minalrestat, quercetin and 3,5-dichlorosalicylic acid (DCL) were used to determine the type of inhibition, and correlate inhibitor potency and binding energies of the complexes with ALR2 and the homologous aldehyde reductase (ALR1), another member of the AKR superfamily. Our results show that the four inhibitors follow either uncompetitive or non-competitive inhibition pattern of substrate reduction for ALR1 and ALR2. Overall, there is correlation between the IC50 (concentration giving 50% inhibition) values of the inhibitors for the two enzymes and the binding energies (ΔH) of the enzyme–inhibitor complexes. Additionally, the results agree with the detailed structural information obtained by X-ray crystallography suggesting that the difference in inhibitor binding for the two enzymes is predominantly mediated by non-conserved residues. In particular, Arg312 in ALR1 (missing in ALR2) contributes favourably to the binding of DCL through an electrostatic interaction with the inhibitor’s electronegative halide atom and undergoes a conformational change upon Tolrestat binding. In ALR2, Thr113 (Tyr116 in ALR1) forms electrostatic interactions with the fluorobenzyl moiety of Minalrestat and the 3- and 4-hydroxy groups on the phenyl ring of quercetin. Our modelling studies suggest that Minalrestat’s binding to ALR1 is accompanied by a conformational change including the side chain of Tyr116 to achieve the selectivity for ALR1 over ALR2.  相似文献   

14.
15.
In human cells, there are three genes that encode DNA ligase polypeptides with distinct but overlapping functions. Previously small molecule inhibitors of human DNA ligases were identified using a structure-based approach. Three of these inhibitors, L82, a DNA ligase I (LigI)-selective inhibitor, and L67, an inhibitor of LigI and DNA ligases III (LigIII), and L189, an inhibitor of all three human DNA ligases, have related structures that are composed of two 6-member aromatic rings separated by different linkers. Here we have performed a structure-activity analysis to identify determinants of activity and selectivity. The majority of the LigI-selective inhibitors had a pyridazine ring whereas the LigI/III- and LigIII-selective inhibitors did not. In addition, the aromatic rings in LigI-selective inhibitors had either arylhydrazone or acylhydrazone, but not vinyl linkers. Among the LigI-selective inhibitors, L82-G17 exhibited increased activity against and selectivity for LigI compared with L82. Notably. L82-G17 is an uncompetitive inhibitor of the third step of the ligation reaction, phosphodiester bond formation. Cells expressing LigI were more sensitive to L82-G17 than isogenic LIG1 null cells. Furthermore, cells lacking nuclear LigIIIα, which can substitute for LigI in DNA replication, were also more sensitive to L82-G17 than isogenic parental cells. Together, our results demonstrate that L82-G17 is a LigI-selective inhibitor with utility as a probe of the catalytic activity and cellular functions of LigI and provide a framework for the future design of DNA ligase inhibitors.  相似文献   

16.
Protease nexin I is a proteinase inhibitor that is secreted by human fibroblasts and forms stable complexes with certain serine proteinases; the complexes then bind to the fibroblasts and are rapidly internalized and degraded. In this report, we show that this inhibitor, which is present in very low concentrations in plasma, has functional and structural similarities to C1 inhibitor, an abundant proteinase inhibitor in plasma. Both inhibitors complex and inactivate certain proteinases that previously were known to rapidly react only with C1 inhibitor. Kinetic inhibition studies show that protease nexin I inhibits Factor XIIa and plasma kallikrein with second-order rate constants of 2.3 x 10(3) and 2.5 x 10(5) M-1 s-1, respectively, which are similar to the rate constants for inhibition of these proteinases by C1 inhibitor. Protease nexin I inhibits C1s about one-tenth as rapidly as does C1 inhibitor. Alignment of the amino acid sequences of protease nexin I and C1 inhibitor shows that these proteins have similarity at their reactive centers (from sites P7 to P1). The remaining regions of the two proteins share much less similarity. In contrast to protease nexin I, C1 inhibitor is not secreted by human fibroblasts. Although 125I-C1s-protease nexin I complexes readily bind to human fibroblasts, binding of 125I-C1s-C1 inhibitor complexes or other 125I-proteinase-C1-inhibitor complexes to these cells is not detectable. Thus, protease nexin I and C1 inhibitor may control some common regulatory proteinases in the extravascular and vascular compartments, respectively.  相似文献   

17.
18.
Identification of new potential inhibitors against Hedgehog pathway activator protein Smoothened (SMO) is considered to be of higher importance to improvise the future cancer therapeutics. Different SMO inhibitors/drugs (e.g. Cyclopamine, Vismodegib, Taladegib) used till date are found to be associated with several drug-related resistivity and toxicity. To explore the ability of new drug/inhibitor molecules, which can show better/similar binding and dynamic stability as compared to known inhibitors, virtual screening against SMO is performed followed by the comparative docking and molecular dynamic studies. ‘ZINC12368305’ is found to be the best molecule among the entire data-set, as it shows the highest binding affinity and stable conformations. Here, an integrative approach using Dynamic Graph Theory is introduced to gain the molecular insights of the structural integrity of these protein complexes at the residue level by analyzing the corresponding Protein Contact Networks along the Molecular Dynamics trajectories. The study further focuses to understand the detailed binding mechanisms of available inhibitor/drug molecules along with the newly predicted molecule. It is observed that a unique big cluster of low fluctuating residues at the vicinity of the drug binding pocket of the SMO in ZINC12368305-bound complex is present and driving it toward a more stable region. A close inspection on this site reveals the presence of a stable Pi–Pi interaction between the pyrazole group-associated phenanthrene ring of ZINC12368305 and aromatic ring of Phe484 of SMO, which could be the potential factor of ZINC12368305 to create a more stable complex with SMO as compared to the other inhibitors.  相似文献   

19.
Proteinases perform many beneficial functions that are essential to life, but they are also dangerous and must be controlled. Here we focus on one of the control mechanisms: the ubiquitous presence of protein proteinase inhibitors. We deal only with a subset of these: the standard mechanism, canonical protein inhibitors of serine proteinases. Each of the inhibitory domains of such inhibitors has one reactive site peptide bond, which serves all the cognate enzymes as a substrate. The reactive site peptide bond is in a combining loop which has an identical conformation in all inhibitors and in all enzyme-inhibitor complexes. There are at least 18 families of such inhibitors. They all share the conformation of the combining loops but each has its own global three-dimensional structure. Many three-dimensional structures of enzyme-inhibitor complexes were determined. They are frequently used to predict the conformation of substrates in very short-lived enzyme-substrate transition state complexes. Turkey ovomucoid third domain and eglin c have a Leu residue at P(1). In complexes with chymotrypsin, these P(1) Leu residues assume the same conformation. The relative free energies of binding of P(1) Leu (relative to either P(1) Gly or P(1) Ala) are within experimental error, the same for complexes of turkey ovomucoid third domain, eglin c, P(1) Leu variant of bovine pancreatic trypsin inhibitor and of a substrate with chymotrypsin. Therefore, the P(1) Leu conformation in transition state complexes is predictable. In contrast, the conformation of P(1) Lys(+) is strikingly different in the complexes of Lys(18) turkey ovomucoid third domain and of bovine pancreatic trypsin inhibitor with chymotrypsin. The relative free energies of binding are also quite different. Yet, the relative free energies of binding are nearly identical for Lys(+) in turkey ovomucoid third domain and in a substrate, thus allowing us to know the structure of the latter. Similar reasoning is applied to a few other systems.  相似文献   

20.
To prevent diabetic complications derived from enhanced glucose flux via the polyol pathway the development of aldose reductase inhibitors (ARIs) has been established as a promising therapeutic concept. In order to identify novel lead compounds, a virtual screening (VS) was performed successfully suggesting carboxylate-type inhibitors of sub-micromolar to micromolar affinity. Here, we combine a structural characterization of the binding modes observed by X-ray crystallography with isothermal titration calorimetry (ITC) measurements providing insights into the driving forces of inhibitor binding, particularly of the first leads from VS. Characteristic features of this novel inhibitor type include a carboxylate head group connected via an alkyl spacer to a heteroaromatic moiety, which is linked to a further nitro-substituted aromatic portion. The crystal structures of two enzyme-inhibitor complexes have been determined at resolutions of 1.43 A and 1.55 A. Surprisingly, the carboxylic group of the most potent VS lead occupies the catalytic pocket differently compared to the interaction geometry observed in almost all other crystal structures with structurally related ligands and obtained under similar conditions, as an interstitial water molecule is picked up upon ligand binding. The nitro-aromatic moiety of both leads occupies the specificity pocket of the enzyme, however, adopting a different geometry compared to the docking prediction: unexpectedly, the nitro group binds to the bottom of the specificity pocket and provokes remarkable induced-fit adaptations. A peptide group located at the active site orients in such a way that H-bond formation to one nitro group oxygen atom is enabled, whereas a neighbouring tyrosine side-chain performs a slight rotation off from the binding cavity to accommodate the nitro group. Identically constituted ligands, lacking this nitro group, exhibit an affinity drop of one order of magnitude. In addition, thermodynamic data suggest a strongly favourable contribution to binding enthalpy in case the inhibitor is equipped with a nitro group at the corresponding position. To further investigate this phenomenon, we determined crystal structures and thermodynamic data of two similarly constituted IDD-type inhibitors addressing the specificity pocket with either a nitro or halogen-substituted aromatic moiety. As these data suggest, the nitro group provokes the enthalpic contribution, in addition to the H-bond mentioned above, by accepting two "non-classical" H-bonds donated by the aromatic tyrosine side-chain. In summary, this study provides the platform for further structure-guided design hypotheses of novel drug candidates with higher affinity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号