首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The closer muscle of the mesothoracic spiracle of the locust, Schistocerca gregaria is innervated by two excitatory motoneurones and also by processes of a peripherally located neurosecretory cell. Within the muscle, ultrastructural studies show the presence of two types of excitatory nerve terminal which differ in the content of dense cored vesicles and in their distribution. The ventral segment of the muscle is innervated predominantly by terminals with small clear vesicles and only an occasional dense-cored vesicle. The central part of the muscle is innervated predominantly by terminals with small clear vesicles and larger numbers of dense-cored vesicles. The dorsal segment of the muscle is innervated exclusively by a neurosecretory type innervation. The small neurohaemal organ of the median nerve close to the spiracle muscle is immunoreactive to an antibody raised against bovine pancreatic polypeptide but no immunoreactive processes enter the muscle itself. The muscle possesses specific octopaminergic receptors that increase cyclic AMP levels and the possibility that the neurosecretory input to the muscle is provided by either a central or peripheral octopamine containing neurone is discussed.  相似文献   

2.
Neuropathic, metabolic, hormonal, nutritional and immunological factors contribute to the development of sarcopenia. This loss of muscle mass associated with ageing, is a main cause of muscle weakness, but the loss of muscle strength typically exceeds that of muscle size, with a resulting decrease in force per unit of muscle cross-sectional area. Recent evidence suggests that, in addition to a reduction in neural drive and in fibre specific tension, changes in muscle architecture contribute significantly to the loss of muscle force through alterations in muscle mechanical properties. Older muscle, however, maintains a high degree of plasticity in response to increased loading since considerable hypertrophy and a reversal of the alterations in muscle architecture associated with ageing are observed with resistive training.  相似文献   

3.
Some morphological, physiological, and pharmacological properties of the retractor bulbi muscle of the frog were tested. The enzyme-histochemical investigation shows that the retractor bulbi muscle contains twitch muscle fibres only. Two types of twitch muscle fibres, which are especially different in their diameter and in the content of mitochondria, build the muscle in an irregular arrangement; tonic muscle fibres were not observed. On the average, the isolated retractor bulbi muscle has at room temperature a contraction time of 26 ms, a half-relaxation time of 28 ms, a fusion frequency of 75 stimuli/s, and a twitch-tetanus ratio of 0.28. The fatigability of this muscle is higher than in oculorotatory eye muscles but lower than in skeletal muscles of the frog. An increase of the extracellular K+-concentration elicits in retractor bulbi muscles a quickly transient contracture; the mechanical threshold of the muscle fibres is found in a range between 20 and 25 mM K+ in Ringer solution. Similar short-lasting contractures, which are probably caused by twitch fibres, rich in mitochondria, are also evoked by application of depolarizing drugs like acetylcholine. The properties of the retractor bulbi muscle are compared with those of the sartorius muscle of the frog, which likewise contains twitch muscle fibres only.  相似文献   

4.
Summary Cross-union of the tibial with the pudendal nerve innervating the androgen-sensitive levator ani (LA) muscle of male rats, results in reversal of the histochemical muscle fibre pattern concerning myofibrillar ATPase, succinate dehydrogenase and phosphorylase enzyme activities. The homogeneous muscle fibre pattern of the LA muscle is changed to a mosaic pattern of muscles normally innervated by the tibial nerve. The success of the hetero-reinnervation is shown by practically full recovery of muscle weight and of isometric twitch-contraction properties of the LA muscle. Castration of 2-months duration, i. e. lack of the male sex hormone, leads to marked atrophy but no change in histochemical muscle fibre pattern. Hetero-reinnervation of the LA muscle results in change of histochemical enzyme pattern even if the cross-union of nerves is performed after long periods of castration leading to very marked decrease of muscle fibre size. However, testosterone application alone after castration increases markedly muscle fibre size but does not lead to reversal of muscle fibre pattern. The myotropic hormonal influence on the target (LA) muscle is therefore primarily of myogenic origin and specificity of hormonal action is maintained even with a foreign nerve innervating the muscle. The experiments, thus, provide evidence for the differentiation of specific neural influences affecting muscle fibre pattern and hormonal influences in respect to the myotropic action of the sex hormone on the androgen-sensitive LA muscle.  相似文献   

5.
Edman et al. (J. General Physiol. 80 (1982) 769) observed in single fibres of frog that the steady-state forces following active fibre stretch were greater than the purely isometric force obtained at the length from which the stretch was initiated. Operating on the descending limb of the force-length relationship, such a result can only be explained within the framework of the sarcomere length non-uniformity theory, if some fibre segments shortened during the fibre stretch. However, such a result was not found, leaving Edman's observation unexplained. Force enhancement above the initial isometric force has not been investigated systematically in whole muscle, and therefore it is not known whether this property is also part of whole muscle mechanics. The purpose of this study was to test if the steady-state forces following active stretch of cat semitendinosus were greater than the corresponding purely isometric forces at the muscle length from which the stretch was started. Cat semitendinosus was stretched by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these stretches were compared to the corresponding isometric forces at the initial and final muscle lengths. In 109 of 131 tests, the steady-state forces following stretching were greater than the isometric forces at the initial muscle lengths. Force enhancement increased with increasing amounts of stretching, and force enhancement above the initial isometric force was more likely to occur following stretches of great compared to small amplitude. Passive forces following active muscle stretching were often significantly greater than the passive forces at the same muscle length following an isometric contraction or a passive stretching of the muscle. This observation was made consistently at the longest muscle lengths tested. It appears, therefore, that there is a passive force that accounts for part of the force enhancement above the isometric force at the initial muscle length, and that provides increased passive force when a muscle is actively, rather than passively, stretched at long muscle lengths. We conclude that cat semitendinosus demonstrates steady-state force enhancement above the corresponding purely isometric force at the initial muscle length on the descending limb of the force-length relationship for many contractile conditions, and that a unique, and so far undetected, passive, parallel element contributes to this force enhancement, particularly at long muscle lengths where muscle is assumed to be most vulnerable to injuries associated with sarcomere length instability.  相似文献   

6.
Striated muscle fibers and their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimension (100-200 microns of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and some were of the mixed type. Striated muscle fibers represented three different types, which were considered as intermediate, with certain structural features characteristic of the fast fiber type. Of these, the most frequently-found fibers were most similar to the fast fiber type. Satellite cells were numerous; in mixed fascicles they were gradually replaced by smooth muscle cells. The gap between striated muscle fiber and smooth muscle cells was more than 200 nm wide. It contained the respective basal laminae and a delicate layer of amorphous connective tissue. No specialized junctions were formed between consecutive striated muscle fibers, or between striated muscle fibers and smooth muscle cells. Interstitial cells of Cajal were never situated as close to striated muscle fibers as to smooth muscle cells.  相似文献   

7.
Skeletal muscle is the most abundant tissue in the body comprising 40–50% of body mass in humans and playing a central role in maintaining metabolic health. Skeletal muscle protein undergoes rapid turnover, a process that is intricately regulated by the balance between the rates of protein synthesis and degradation. The process of skeletal muscle hypertrophy and regeneration is an important adaptive response to both contractile activity (i.e., exercise) and nutrient availability (i.e., protein ingestion). Ageing and physical inactivity are two conditions associated with a loss of skeletal muscle protein (sarcopenia). Sarcopenia is characterised by a deterioration of muscle quantity and quality, although the precise mechanism(s) underlying this condition remain to be elucidated. This review will (1) summarise our current understanding of the origin and plasticity of skeletal muscle, (2) discuss the major effectors of muscle growth, and (3) highlight the importance of skeletal muscle health in the prevention of several common pathologies.  相似文献   

8.
Environmental temperature varies spatially and temporally, affecting many aspects of an organism’s biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.  相似文献   

9.
Changes in fibre diameters of extraocular muscles of the rabbit were studied at different times after denervation. The whole inferior oblique muscle hypertrophied, while some of the muscle fibres hypertrophied and others showed atrophy, depending on the fibre type. Fibre types have been determined by their histochemical enzyme profile. In the central layer of the muscle the phasic muscle fibres, which are rich in mitochondria, exhibited a transient hypertrophy being maximal 4-5 weeks after denervation and afterwards they atrophied; other phasic muscle fibres, which are poor in mitochondria, atrophied without having shown any sign of hypertrophy. Special, putatively slow tonic muscle fibres, which have low enzyme activities, underwent small long-lasting increases of their diameters. In the superficial layer of extraocular muscle there are two types of extremely thin muscle fibres rich in mitochondira. Both these fibre types hypertrophied to the greatest degree and for a very long time. Comparable changes in fibre diameters as described here for the muscle fibre types of an extraocular muscle are known from special muscle fibres in other vertebrate  相似文献   

10.
At light optic and electron microscopical levels with application of morphometric analysis the mouth orbicular muscle has been studied in 6-8-month-old children with a complete unilateral cleft lip. The muscle is characterized by distinctly manifested signs of hypertrophy: high contents of the connective tissue, poor capillarization, presence of focal destructive-degenerative changes in the muscle fibers; they result from decreased function of the muscle activity. Preoperative physiotherapeutic treatment with pulsed low-frequency electrical current stimulates development of the muscle tissue. In the muscle specific share of muscle fibers increases, and contents of the connective tissue decreases, respectively, indices of capillarization improve, mitochondrial apparatus of the muscle fibers becomes more powerful.  相似文献   

11.
A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality.  相似文献   

12.
In the present study we examined muscle development throughout the complete larval cycle of the bivalve mollusc, Mytilus trossulus. An immunofluorescence technique and laser scanning confocal microscopy were used in order to study the organization of the muscle proteins (myosin, paramyosin, twitchin, and actin) and some neurotransmitters. The appearance of the muscle bundles lagged behind their nervous supply: the neuronal elements developed slightly earlier (by 2 h) than the muscle cells. The pioneer muscle cells forming a prototroch muscle ring were observed in a completed trochophore. We documented a well‐organized muscle system that consisted of the muscle ring transforming into three pairs of velar striated retractors in the early veliger. The striations were positive for all muscle proteins tested. Distribution of FMRFamide and serotonin (5‐HT) immunocytochemical staining relative to the muscle ring differed significantly: 5‐HT‐immunioreactive cells were situated in the center of the striated muscle ring, while Phe‐Met‐Arg‐Phe‐NH2 neuropeptide FMRFamid immunoreactive fibers were located in a distal part of this ring. Our data showed clearly that the muscle proteins and the neurotransmitters were co‐expressed in a coordinated fashion in a continuum during the early stages of the mussel development. Our study provides the first strong evidence that mussel larval metamorphosis is accompanied by a massive reorganization of striated muscles, followed by the development of smooth muscles capable of catch‐contraction.  相似文献   

13.
The separated shell plates with the rearranged musculature (adductor muscle) is a novelty for bivalves. Despite its importance in the bivalve bodyplan, the development of the anterior adductor muscle remains unresolved. In this study, we investigate the myogenesis of the bivalve species Septifer virgatus to reveal the developmental origin of the larval muscles in bivalves, focusing on the anterior adductor muscle. We observed that larval retractor muscles are differentiated from the ectomesoderm in bivalves, and that the anterior adductor muscles are derived from primordial larval retractor muscles via segregation of the myoblast during the veliger larval stage. Through the comparative study of myogenesis in bivalves and its related taxa, gastropods, we found that both species possess myoblasts that emerge bilaterally and later meet dorsally. We hypothesize that these myoblasts, which are a major component of the main larval retractor in limpets, are homologous to the anterior adductor muscle in bivalves. These observations imply that the anterior adductor muscle of bivalves evolved as a novel muscle by modifying the attachment sites of an existing muscle.  相似文献   

14.
Relationships between muscular strength and the level of energy sources in the muscle. Acta Physiol. Pol., 1978, 29 (2): 139--151. An attempt was made to establish a relationship between the post-excercise changes in the level of anaerobic energy sources and changes in the muscular strength. The gastrocnemius muscle of Wistar rats was examined. The muscle strength was measured by the resistance tensometry. In muscle specimens ATP, CP and glycogen contents were determined. It was demonstrated that changes in the post-excersise muscle response to electric stimulus have a phasic character resembling the overcompensation curve. The percent changes in the content of anaerobic energy sources in the muscle after contractions varying in duration suggests also overcompensation the muscle content of these substances. The parallelity between the time of appearance of peak overcompensation phase in the muscle strength and in the post-exercise level of musclar ATP, CP and glycogen contents suggest a casual relationship between these changes.  相似文献   

15.
We used fluorescently labeled phalloidin to examine the subumbrellar musculature of the scyphozoan jellyfish Aurelia aurita in a developmental series from ephyra to adult medusa. In the ephyra, the swim musculature includes a disc‐like sheet of circular muscle, in addition to two radial bands of muscle in each of the eight ephyral arms. The radial muscle bands join with the circular muscle, and both circular and radial muscle act together during each swim contraction. As the ephyra grows into a juvenile medusa, arms tissue is resorbed as the bell tissue grows outward, so eventually, the ephyral arms disappear. During this process, the circular muscle disc also grows outward and the radial muscle bands of the arms also disappear. At this time, a marginal gap appears at the bell margin, which is devoid of circular muscle cells, but has a loose arrangement of radial muscle fibers. This marginal gap is preserved as the medusa grows, and contributes to the floppy nature of the bell margin. Radial distortions in the circular muscle layer involve muscle fibers that run in random directions, with a primarily radial orientation. These are believed to be remnants of the radial muscle of the ephyral arms, and the distortions decrease in number and extent as the medusa grows. Since the mechanics of swimming changes from drag‐based paddling in the ephyra to marginal rowing in the adult medusa, the development of the marginal gap and the presence of radial distortions should be considered in terms of this mechanical transition.  相似文献   

16.
The latissimus dorsi muscle is among the most commonly used muscle flaps because it has broad versatility and is generally believed to result in minimal donor-site morbidity. However, the normal physiology of the shoulder girdle depends on the function of this muscle. Therefore, we have undertaken this review of the literature to examine the issue of biomechanical and functional changes of the shoulder that occur with transfer of the latissimus dorsi muscle and to determine whether these changes result in deficits in normal function. A review of the literature pertaining to all aspects of the latissimus muscle and shoulder function following muscle transfer was conducted. The latissimus muscle functions in extension, adduction, and internal and external rotation. After the transfer of the muscle there are deficits in extension and adduction. These deficits result in a faster rate of fatigue during activities in which the arms are extended over the head, such as ladder climbing and swimming. In addition, there is no decrease in range of shoulder motion.  相似文献   

17.
Summary A quantitative ultrastructural study was made of the neuntes forming the deep muscular and circular muscle plexuses of the guinea-pig small intestine following microsurgical lesions designed to interrupt intrinsic and extrinsic nerve pathways within the intestinal wall. Removal of a collar of longitudinal muscle with attached myenteric plexus from the circumference of a segment of small intestine resulted in the subsequent disappearance of 99.3% of neurites in the underlying circular muscle. The few surviving neurites in the deep muscular plexus and circular muscle disappeared completely from lesioned segments that were, in addition, extrinsically denervated surgically. These results indicate that the majority of nerve fibres in the deep muscular and circular muscle plexuses of the guinea-pig small intestine is intrinsic to the intestine and originates from nerve cell bodies located in the overlying myenteric plexus. At the light-microscopic level, nerve bundles were traced from the myenteric plexus to the circular muscle.  相似文献   

18.
The supracoracoideus muscle of the axolotl shoulder girdle is innervated by two nerves, the supracoracoideus nerve (SC) supplying most of the muscle and the posterior supracoracoideus (PSC) supplying the posterior corner. All the muscle fibres are multiply innervated and at the border between the two innervations many muscle fibres, when penetrated by a microelectrode, show junction potentials from both nerves. In such cases one junction potential is often very small, below the threshold for exciting muscle contraction, the other large and effective at exciting the muscle. If the SC nerve is cut, the territory of the PSC nerve expands over several weeks. Upon regrowth of the cut nerve it reinnervates its old muscle fibres and removes the previous foreign innervation, the borderline between the two nerve territories being established exactly as before. This depends upon two processes, sprouting of nerves and a competitive repression of transmission from nerves ending on foreign muscle fibres.  相似文献   

19.
Frog spinal cord reflex behaviors have been used to test the idea of spinal primitives. We have suggested a significant role for proprioception in regulation of primitives. However the in vivo behavior of spindle and golgi tendon receptors in frogs in response to vibration are not well described and the proportions of these proprioceptors are not established. In this study, we examine the selectivity of muscle vibration in the spinal frog. The aim of the study was (1) to examine how hindlimb muscle spindles and GTO receptors are activated by muscle vibration and (2) to estimate the relative numbers of GTO receptors and spindle afferents in a selected muscle, for comparison with the mammal. Single muscle afferents from the biceps muscle were identified in the dorsal roots. These were tested in response to biceps vibration, intramuscular stimulation and biceps nerve stimulation. Biceps units were categorized into two types: First, spindle afferents which had a high conduction velocity (approximately 20-30 m/s), responded reliably (were entrained 1:1) to muscle vibration, and exhibited distinct pauses to shortening muscle contractions. Second, golgi tendon organ afferents, which had a lower conduction velocity (approximately 10-20 m/s), responded less reliably to muscle vibration at physiologic muscle lengths, but responded more reliably at extended lengths or with background muscle contraction, and exhibited distinct bursts to shortening muscle contractions. Vibration responses of these units were tested with and without muscle curarization. Ensemble (suction electrode) recordings from the dorsal roots were used to provide rough estimates of the proportions of the two muscle afferent types.  相似文献   

20.
Type V like collagens are widely distributed in marine invertebrates, particularly crustaceans and molluscs. We have been investigating the nature of collagens in the muscular tissues of crustaceans. The presence of type V like homotrimeric collagen in prawn muscle was noted before. We report here a comparative analysis of collagens purified from the pepsin digest of abdominal and pereiopod muscle tissues of the crab, Scylla serrata. The major collagen in either muscle precipitated at 1.2 M NaCl at acid pH, suggestive of a type V like property. The homotrimeric collagen was then purified to near homogeneity by precipitation with 20% ammonium sulphate. Solubility characteristics and biochemical studies indicated the leg muscle collagens to be highly crosslinked and stabilised by more bound carbohydrates, as compared to the abdominal muscle collagen. Analysis of amino acid composition revealed a close similarity to known type V collagens and the leg muscle collagen was characterised by more lysine hydroxylation and slightly reduced glycine content. The leg muscle collagen had a higher denaturation temperature and intrinsic viscosity than the abdominal muscle collagen. Our results confirm the similarity of major crustacean muscle collagens to vertebrate type V collagen. Further, the relative complexity of leg muscle collagen, unlike the abdominal muscle collagen, correlates to the specific functional requirements, where the former is involved in locomotion and preying and the latter in normal growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号