首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron is an indispensable micronutrient for virtually all microorganisms, where it acts as a cofactor of many enzymes involved in regulation of multiple cellular and physiological functions. This metal is also considered an important determinant contributing to the pathogenesis of fungal infectious diseases, and therefore the identification of iron-regulated metabolic processes occurring within the invading fungal cell can help the development of new antifungal therapeutic strategies. In this study, we examined relationships between iron availability and neutral storage lipids in Histoplasma capsulatum, a dimorphic fungus responsible for the most common respiratory and systemic mycosis in humans. Yeast cells were grown in a defined minimal medium supplemented with or without iron. Lipids were extracted from cells at the log and late stationary growth phases, then separated by thin-layer chromatography, and fatty acids were analyzed by gas chromatography. A culture age-related decrease in the unsaturated fatty acid content was observed in all four neutral lipid classes examined. Iron-related alterations could be seen in relation to triacylglycerol and free fatty acid pools, whereas no iron-dependent effects were detected in diacylglycerol and steryl ester fractions. Regarding triacylglycerols, the presence of iron positively affected the content of unsaturated fatty acids, and this stabilizing action of iron was notably increased when ferrous ions were added. Subsequent iron uptake studies showed a definite preference of H. capsulatum to acquire iron in its reduced, more soluble, ferrous form, and therefore, the availability of iron may be the underlying reason for the observed iron-maintained homeostasis in H. capsulatum triacylglycerols.  相似文献   

2.
Seasonal changes in the contents of lipids and photosynthetic pigments (PSP) in the brown alga Undaria pinnatifida (Harvey) Suringar (Phaeophyceae, Alariaceae) on different stages of its growth were studied. Lipids of all plant growth group comprised glyceroglycolipids (GL), phospholipids, and neutral lipids (NL). The ratio between these lipid groups and the content of particular lipids depended on the season and algal growth stage: NL predominated in seedlings; juvenile algae comprised approximately similar amounts of NL and GL; and in adult algae, GL predominated. In winter and spring, algal tissues contained relatively more free sterols than in summer. Total lipid content in seedlings and juvenile algae was higher then in adult plants. Lipid fatty acid (FA) composition was similar on all growth stages, but the content of major components differed; this is mainly related to 18:4 n-3, 20:4 n-6, and 20:5 n-3 acids. The predominant FAs in seedling lipids were saturated FAs, whereas in the lipids of juvenile and adult algae, polyunsaturated FAs predominated.  相似文献   

3.
This study was undertaken to provide a thorough analysis of the neutral lipid (NL) and polar lipid (PL) fractions of horse meat that included the content and distribution of acyl and alkenyl moieties in foals under different rearing conditions. Two groups of crossbred horses were studied; the first group was selected from suckling foals produced under grazing conditions and slaughtered at 4 months of age (n=8), and the second group was selected from concentrate-finished foals and slaughtered at 12 months of age (n=7). There were significant differences related to the age and feeding practices of foals which affected the intramuscular (IM) fat content and the fatty acid (FA) composition of NL and PL fractions. Samples from suckling foals were leaner and provided the highest content of methylation products from the plasmalogenic lipids, and total and n-3 polyunsaturated fatty acid (PUFA). By contrast, the meat from concentrate-finished foals had a higher IM fat level resulting in a greater accumulation of 16:0 and total monounsaturated FAs in the NL fraction, whereas the muscle PL fraction retained a similar FA composition between both groups. Linolenic acid was preferentially deposited in the NL fraction, but linoleic acid and the long-chain n-3 and n-6 PUFAs were incorporated into the PL fraction where they served as cell membrane constituents and in eicosanoid formation.  相似文献   

4.
The lipid and fatty acid (FA) compositions of a marine diatom alga Thalassiosira pseudonana grown in culture were investigated. The relative content of separate lipid classes and their FA composition varied during of the life cycle. During the periods of active cell division and resting cell production, the proportion of polar lipids, as the structural components of cell membranes, increased. Changes in the proportion of lipid classes resulted in shifts in the FA composition of total lipids. It is suggested that the structural components of photosynthetic and cells membranes accumulate in the resting cells. Thereby, a rapid cell growth and an extensive development of the species under favorable environmental conditions is provided.  相似文献   

5.
The fatty acid (FA) composition of common pine (Pinus sylvestris L.) needle lipids was studied. It was shown that FA composition of needle lipids changed during the entire growth period (from March to October) under the influence of environmental factors (temperature, solar radiation) affecting the biosynthesis of chloroplast membrane lipids in pine needles. Among needle lipid FAs, unsaturated polymethylene-interrupted FAs (Δ5-UPIFA) were identified: pinolenic, skiadonic, coniferonic, and other); in March and April, their content attained 16.1 and 16.9% of total FAs; it decreased in June to 6.0% and increased again in September to 20.4%.  相似文献   

6.
1. Results from the few field studies that have tried to relate seston taxonomic and fatty acid (FA) composition suggest that phytoplankton composition only partially explains seston FA composition. However, in these studies, the heterotrophic components of seston (i.e. bacteria and heterotrophic protists) have not been accounted for. 2. The general premise of this article was that including the contribution of heterotrophs to seston biomass can improve understanding of the variability in seston FA composition. This was tested for an oligotrophic clearwater lake, in which the taxonomic and FA compositions of seston, fractionated into three size classes, were monitored every 2 weeks over a growth season. The relationship between seston taxonomic and FA composition was studied using canonical correlation analyses. 3. Because of their relative richness in branched FA and lack of highly unsaturated FAs (HUFA) compared to autotrophs and other protists, the contribution of bacteria to seston biomass was shown to explain an important part of the differences in FA composition between the different seston size classes. Phytoplankton seasonal succession also affected the FA composition of seston but only for size classes that were dominated by autotrophs. 4. The results also indicated that heterotrophic protists such as ciliates and heterotrophic nanoflagellates might substantially influence the seston FA, and especially, HUFA, composition. 5. The per cent of variability in seston FA composition that was explained by its taxonomic composition was still relatively low, even when taking account of heterotrophs. Hence, other possible influences, such as phytoplankton species composition, physiological state and the contribution of terrestrial detritus, need investigation.  相似文献   

7.
Cetoleic acid (22:1n-11) is a good indicator of diet in marine predators and has proven to be an important fatty acid (FA) when using adipose tissue FA composition to study diet in marine mammals and seabirds. Feeding studies have shown that 22:1 isomers are predictably underrepresented in adipose tissue relative to diet, implying that metabolism within the predator strongly influences the relationship between the level of these FAs in diet and adipose tissue. Fully understanding such metabolic processes for individual FAs is important for the quantitative estimation of predator diets. We employed a dual-label radioisotope tracer technique to investigate the potential modification of 22:1n-11 and its recovery in the blubber of gray seals (Halichoerus grypus) and in the adipose tissue and liver of mink (Mustela vison), a smaller model carnivore also accustomed to fish-based diets. In both seals and mink, (3)H radioactivity was found in the chain-shortened products of 22:1n-11, with 18:1 being the dominant product. We also found (3)H radioactivity in saturated FAs. The distribution patterns of (3)H radioactivity across the FAs isolated from seal blubber and mink subcutaneous adipose tissue were comparable, indicating that mink are a good model for the investigation of lipid metabolism in marine carnivores.  相似文献   

8.
Under bleaching conditions, corals lose their symbiotic zooxanthellae, and thus, the ability to synthesize fatty acids (FAs) from photosynthetically derived carbon. This study investigated the lipid content and FA composition in healthy and bleached corals from the Odo reef flat in Okinawa, southern Japan, following a bleaching event. It was hypothesized that the FA composition and abundance would change as algae are lost or die, and possibly microbial abundance would increase in corals as a consequence of bleaching. The lipid content and FA composition of three healthy coral species (Pavona frondifera, Acropora pulchra, and Goniastrea aspera) and of partially bleached and completely bleached colonies of P. frondifera were examined. The FA composition did not differ among healthy corals, but differed significantly among healthy, partially bleached, and completely bleached specimens of P. frondifera. Completely bleached corals contained significantly lower lipid and total FA content, as well as lower relative amounts of polyunsaturated FAs and higher relative amounts of saturated FAs, than healthy and partially bleached corals. Furthermore, there was a significantly higher relative concentration of monounsaturated FAs and odd-numbered branched FAs in completely bleached corals, indicating an increase in bacterial colonization in the bleached corals.  相似文献   

9.
We have recently shown that vitamin D3 (cholecalciferol) absorption is not a simple passive diffusion but involves cholesterol transporters. As free fatty acids (FAs) modulate cholesterol intestinal absorption and metabolism, we hypothesized that FAs may also interact with vitamin D absorption. Effects of FAs were evaluated at different levels of cholecalciferol intestinal absorption. First, the physicochemical properties of micelles formed with different FAs were analyzed. The micelles were then administered to human Caco-2 cells in culture to evaluate FA effects on (i) cholecalciferol uptake and basolateral efflux and (ii) the regulation of genes coding proteins involved in lipid absorption process. Micellar electric charge was correlated with both FA chain length and degree of unsaturation. Long-chain FAs at 500 μM in mixed micelles decreased cholecalciferol uptake in Caco-2 cells. This decrease was annihilated as soon as the long-chain FAs were mixed with other FAs. Oleic acid significantly improved cholecalciferol basolateral efflux compared to other FAs. These results were partly explained by a modulation of genes coding for lipid transport proteins such as Niemann-pick C1-like 1 and scavenger receptor class B type I. The data reported here show for the first time that FAs can interact with cholecalciferol intestinal absorption at different key steps of the absorption process. Cholecalciferol intestinal absorption may thus be optimized according to oil FA composition.  相似文献   

10.
The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K+ g dry weight−1. The maximum concentration of K+ was 15.06 mg g−1 dry weight at 30 mg l−1 of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5–30 mg l−1 strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.  相似文献   

11.
Qualitative and quantitative characteristics of the alterations in the lipid composition of the membrane of the basidial fungus Flammulina velutipes in the course of surface culture development were investigated. Modifications of the lipid composition were shown to be timed to specific ontogeny stages, such as changes in the growth rate of the colonies, the appearance of differentiated vegetative cells, and the formation of generative structures. A slowdown of growth correlated with an alteration in the ratio of major classes of phospholipids, namely, with a decrease of phosphatidylcholine relative content and an increase in phosphatidylethanolamines. The differentiation of vegetative cells of the mycelium proceeded along with modifications of molecular composition of glycoceramides. In the course of the first week of growth, the surface culture of F. velutipes produced monohexosylceramides with epoxidized methyl sphingadienine as a sphingoid base. Later on, along with culture growth and specialization of mycelium cells, molecular species with methyl sphingadienine, common for basidiomycetes, start to prevail among the fungal glycoceramides. The formation of fruit bodies is accompanied by enrichment of molecules of phospholipids, mainly, the phosphatidylcholines, with unsaturated fatty acids.  相似文献   

12.
Acyl coenzyme A (CoA) synthetase (ACS) enzymes catalyze the activation of free fatty acids (FAs) to CoA esters by a two-step thioesterification reaction. Activated FAs participate in a variety of anabolic and catabolic lipid metabolic pathways, including de novo complex lipid biosynthesis, FA β-oxidation, and lipid membrane remodeling. Analysis of the genome sequence of the filamentous fungus Neurospora crassa identified seven putative fatty ACSs (ACS-1 through ACS-7). ACS-3 was found to be the major activator for exogenous FAs for anabolic lipid metabolic pathways, and consistent with this finding, ACS-3 localized to the endoplasmic reticulum, plasma membrane, and septa. Double-mutant analyses confirmed partial functional redundancy of ACS-2 and ACS-3. ACS-5 was determined to function in siderophore biosynthesis, indicating alternative functions for ACS enzymes in addition to fatty acid metabolism. The N. crassa ACSs involved in activation of FAs for catabolism were not specifically defined, presumably due to functional redundancy of several of ACSs for catabolism of exogenous FAs.  相似文献   

13.
Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood-brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo-like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.  相似文献   

14.
A major source of energy during lactation in mammals is provided through the mobilization of blubber fatty acids (FAs). We investigated the extent to which FAs were mobilized to support both maternal metabolic requirements and milk production in the Weddell seal and how this was reflected in the FA composition of the pup's blubber at the end of lactation (EL). FA composition of postpartum female blubber was similar in the 2 yr of study (2002 and 2003) but differed markedly by EL. Pup blubber FAs (at EL) were also different between years and did not match that of the mother's milk or blubber. Milk FA composition changed during lactation, which may have been a reflection of an increase in pup energy demands at different stages of development. In addition, there was evidence of feeding by some females during lactation, with higher levels of some FAs in the milk than in the blubber. Our results indicate that differential mobilization of FAs occurred in lactating Weddell seals and that this was related to total body lipid stores at postpartum. Furthermore, growing pups did not store FAs unmodified, providing evidence that selective use does occur and also that using FA composition to elucidate dietary sources may be problematic in growing individuals.  相似文献   

15.
A study has been carried out to investigate the influence of nitrogen deficiency on intracellular lipid composition, including total fatty acid composition of lipids, polar lipids, and triacylglycerols, of the alga Botryococcus braunii Kütz IPPAS H-252 in batch culture. Under nitrogen limitation, the alga accumulates lipids as triacylglycerols and the total fatty acid (FA) composition changes: trienoic acids decrease (from 52.8–57.2 to 19.5–24.7% of the total FAs) and the oleic acid increases (from 1.1–1.2 to 17.1–24.4%) as does the saturated acids (from 23.7–26 to 32.9–46.1%). A similar rearrangement in the FA spectrum occurs at later times in the control culture, but it is less pronounced. Under nitrogen limitation, considerable changes in the polar lipid FAs are registered at day 13: saturated acids increase (from 28.6–35.5 to 76.8%) and all polyenoic acids markedly decrease (from 56.9–64.1 to 6.8%). Changes in the triacylglycerol fatty acid spectrum are seen on day 7: the oleic acid increases (from 14.7 to 34.2%) and remains at a high level till the end of the culture. In the control, triacylglycerols with large contents of oleic acid are detected at day 13, the total lipids and triacylglycerols still remaining unchanged.  相似文献   

16.
The changes of the molecular species composition of esterified fatty acids (FAs) of total and nonextractable lipids were determined in roots and etiolated shoots of 3- to 10-day-old wheat (Triticum aestivumL.) seedlings infected with the fungus Bipolaris sorokiniana, the agent of helminthosporic root rot. A novel technique of assessing the extent of the infection-induced deviation of FA composition, mol %, from the control value was developed. It consists in the quantitative determination of both the deviations in this composition and the extent of contribution of separate FA species to the deviations observed. The application of this technique has shown that, for the total lipids, the maximum of such a deviation, in accordance with the membrane theory of stress, directly coincided in time with the onset of a decrease in the dry matter content in both roots and shoots. In each of these, the deviation was primarily caused by the change in the content of those FA species that usually dominate in a specific group of membrane lipids prevailing in a given organ, viz., plastid glycolipids in shoots and extraplastidal membrane phospholipids in roots. In both cases, C20–C22FAs significantly contributed to the deviations observed. This fact seems to reflect an enhanced formation of epicuticular waxes rich in these FAs on the shoot and root surfaces as an adaptive response of plants to fungal infection. Nonextractable (annular) membrane lipids, because of their vital importance for the survival of plant cells, differed from the total lipids with a far greater stability of their quantitative FA composition under conditions of infection-induced metabolic disturbances.  相似文献   

17.
The relationship between taxonomic position and the lipid composition of octocorals from coastal waters of Vietnam was investigated. The principal component analysis of the total fatty acid (FA) composition of 64 coral specimens showed that total FAs are markers at the family level. A good distinction was obtained between antipatarians, gorgonians, and alcyonarians. Azooxanthellate corals of the genus Dendronephthya formed a separate group. The alcyonarian genera Sinularia, Lobophytum, and Sarcophyton were distinguished only by the composition of polyunsaturated FAs. The taxon-specific composition of FAs in octocorals is likely to be determined by differences in the nutrition of food sources, symbiont composition, and the enzymatic activity of FA biosynthesis.  相似文献   

18.
Fatty acid (FA) signature analysis is a powerful tool to investigate foraging ecology and food web dynamics in marine ecosystems. However, use of FA signatures to qualitatively or quantitatively infer diets is potentially complicated by effects of nutritional state on lipid metabolism. Estimation of diets using the quantitative fatty acid signature analysis (QFASA) model requires the use of calibration coefficients to account for predator metabolism of individual FAs. We conducted a captive feeding experiment to determine the effects of a 50% reduction in food intake on growth rate and adipose tissue FA signatures of tufted puffin (Fratercula cirrhata) nestlings, a species that routinely experiences food restriction during growth. FA signatures of chicks fed low- and high-calorie diets both exhibited a change in composition in response to the dietary shift with the direction of change in the composition of individual FAs matching the direction of change in the dietary FAs. Despite a growth rate in the restricted nestlings that was 38% of those in the well-fed group, rates of FA turnover were not different between high and low-calorie treatments, and turnover was close to, but not entirely complete, after 27 days on both high-calorie and restricted diets. FA signatures of tufted puffin nestlings were significantly affected by caloric restriction, but these effects were much less pronounced than those of dietary turnover, and calibration coefficients of puffins fed low and high-calorie diets were highly correlated. Our results demonstrate that changes in physiological state can affect FA metabolism, but future research is required to better understand whether the size of these effects is sufficient to substantially alter diet estimation using the QFASA model.  相似文献   

19.
Unravelling the significance of cellular fatty acid-binding proteins   总被引:6,自引:0,他引:6  
Cellular long-chain fatty acid (FA) transport and metabolism are believed to be regulated by membrane-associated and soluble proteins that bind and transport FAs. Several different classes of membrane proteins have been proposed as FA acceptors or transmembrane FA transporters. New evidence from in-vitro and whole-animal studies supports the existence of protein-mediated transmembrane transport of FAs, which is likely to coexist with passive diffusional uptake. The trafficking of FAs by intracellular fatty acid-binding proteins may involve their interaction with specific membrane or protein targets. Evidence is also emerging for concerted actions between the membrane and cytoplasmic fatty acid-binding proteins that allow for efficient regulation of FA transport and metabolism.  相似文献   

20.
Histoplasma capsulatum is the most common cause of invasive fungal pulmonary disease worldwide. The interaction of H. capsulatum with a host is a complex, dynamic process. Severe disease most commonly occurs in individuals with compromised immunity, and the increasing utilization of immunomodulators in medicine has revealed significant risks for reactivation disease in patients with latent histoplasmosis. Fortunately, there are well developed molecular tools and excellent animal models for studying H. capsulatum virulence and numerous recent advances have been made regarding the pathogenesis of this fungus that will improve our capacity to combat disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号