首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.  相似文献   

2.
3.
4.
Cutin and suberin are insoluble lipid polymers that provide critical barrier functions to the cell wall of certain plant tissues, including the epidermis, endodermis and periderm. Genes that are specific to the biosynthesis of cutins and/or aliphatic suberins have been identified, mainly in Arabidopsis thaliana. They notably encode acyltransferases, oxidases and transporters, which may have either well-defined or more debatable biochemical functions. However, despite these advances, important aspects of cutin and suberin synthesis remain obscure. Central questions include whether fatty acyl monomers or oligomers are exported, and the extent of extracellular assembly and attachment to the cell wall. These issues are reviewed. Greater emphasis on chemistry and biochemistry will be required to solve these unknowns and link structure with function.  相似文献   

5.
Nonacosan-10-ol (0.7%) and the cutin acid, 9,16-dihydroxyhexadecanoic acid (0.3%) are present in Pinus sylvestris microspores. The pollen coat hence has some features in common with leaf cuticles.  相似文献   

6.
Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.  相似文献   

7.
Purified cutin from cranberry (Vaccinium macrocarpon, var. Howes) skin was selectively degraded, and the cutin acids, as methyl esters, separated by TLC into seven classes including monobasic acids, dibasic acids, monohydroxy monobasic acids, monohydroxy epoxymonobasic acids, vic-dihydroxy dibasic acids, dihydroxy monobasic acids and trihydroxy monobasic acids. Of the 41 components identified in cranberry cutin by GLC and MS analysis, 18-hydroxyoctadec-cis-9-enoic acid (9·4%), 18-hydroxy-cis-9,10-epoxyoctadecanoic acid (7·5%), 10,16-dihydroxyhexadecanoic acid (16·7%) and threo-9,10,18-trihydroxyoctadecanoic acid (43·7%) were shown to be the major constituents.  相似文献   

8.
9.
10.
Stem cutin from P. radiata seedlings grown under winter and summer environmental conditions comprised n-alkanoic, (C10–C26), α, ω-alkanedioic (C14–C22), ω-hydroxyalkanoic (C12–C24), hydroxy-α, ω-alkanedioic and polyhydroxyalkanoic acids. 9-Hydroxyheptadecane-1, 17-dioic, 9-hydroxyoctadecene-1, 18-dioic, 9-hydroxynonadecane-1, 19-dioic, and 10, 17-dihydroxyheptadecanoic acids are newly-identified constituents of gymnosperm cutin. Cutin grown under winter temperatures and photoperiod contained twice the amount of 9, 16-dihydroxyhexadecanoic acid than that in summer-grown cutin, suggesting that the winter-grown cutin was formed from a highly cross-linked polymer, and that summer-grown cutin contained more linear polyester portions in the polymer.  相似文献   

11.
12.
The number of free and bound hydroxyl and carboxyl groups of the cutin of Quercus suber leaves was investigated by the lithium borohydride hydrogenolysis of mesyl-cutin compared with the lithium borohydride hydrogenolysis of untreated cutin. Fifty per cent of the vic-diol groups of the trihydroxy C18 acid component and twenty five per cent of the secondary hydroxyl groups of the dihydroxy C16 acid component are free. The rest of the secondary and all of the primary hydroxyl groups are esterified; all carboxyl groups are esterified.  相似文献   

13.
Perception of free cutin monomers by plant cells   总被引:4,自引:3,他引:1  
Enzymatic degradation of plant cuticles by fungal pathogens results in the release of free cutin monomers. The hypothesis that free cutin monomers are recognized by plant cells as endogenous stress-related signals was tested in a model system consisting of cultured potato cells. Addition of cutin monomers in the micromolar range induced a transient alkalinization of the culture medium, similar to that observed with chitin or chitotetraose that served as positive control. The cutin monomers tested varied considerably in their potential to induce alkalinization, the most and least active compounds being cis -9,10-epoxy-18-hydroxystearic acid and palmitic acid, respectively. n ,16-dihydroxypalmitic acid ( n = 8, 9 or 10) was found to be the major component of potato leaf cuticle and was among the most active cutin monomers. 9,10-Dihydroxystearic acid, an analogue of the cutin monomer threo -9,10,18-trihydroxystearic acid, exhibited biological activity in a stereoselective manner, only the naturally occurring threo -stereoisomer inducing a rapid and strong alkalinization response. Alkalinization of the culture medium was inhibited by addition of the protein-kinase inhibitor K-252a, and the onset of alkalinization was paralleled by changes in phosphorylation of specific proteins. The active cutin monomers also stimulated the production of the plant stress hormone ethylene and activated defence-related genes at the mRNA level. The data provide evidence for a role of enzymatic breakdown products of plant cuticles as a new class of endogenous signal molecules.  相似文献   

14.
Jones JH 《Plant physiology》1978,62(5):831-832
The composition of Malus pumila Mill. cutin from cuticles isolated using ZnCl2-HCl reagent has been compared to that isolated by an oxalate-enzymic method. Molecular changes were observed and included the loss of unsaturated components and hydroxyl groups. Such changes may alter the results of physiochemical investigations of cuticles.  相似文献   

15.
Cutin and suberin are the polymer matrices for lipophilic cell wall barriers. These barriers control the fluxes of gases, water and solutes, and also play roles in protecting plants from biotic and abiotic stresses and in controlling plant morphology. Although they are ubiquitous, cutin and suberin are the least understood of the major plant extracellular polymers. The use of forward and reverse genetic approaches in Arabidopsis has led to the identification of oxidoreductase and acyltransferase genes involved in the biosynthesis of these polymers. However, major questions about the underlying polymer structure, biochemistry, and intracellular versus extracellular assembly remain to be resolved. The analysis of plant lines with modified cutins and suberins has begun to reveal the inter-relationships between the composition and function of these polymers.  相似文献   

16.
Atomic force microscopy, FT-IR spectroscopy, and solid-state nuclear magnetic resonance have been used to improve our current knowledge on the molecular characteristics of the biopolyester cutin, the main component of the plant cuticle. After comparison of samples of cutin isolated from young and mature tomato fruit cuticles has been possible to establish different degrees of cross-linking in the biopolymer and that the polymer is mainly formed after esterification of secondary hydroxyl groups of the monomers that form this type of cutin. Atomic force microscopy gave useful structural information on the molecular topography of the outer surface of the isolated samples. The texture of these samples is a consequence of the cross-linking degree or chemical status of the polymer. Thus, the more dense and cross-linked cutin from ripe or mature tomato fruit is characterized by a flatter and more globular texture in addition to the development of elongated and orientated superstructures.  相似文献   

17.
18.
The hydroxyfatty acid polymer, cutin, is the structural component of plant cuticle. Combined gas chromatography-mass spectrometry of the hydrogenolysis and deuterolysis products of rosemary cutin (Rosmarinus officinalis) revealed a series of components suggesting the conversion of linoleic acid to 9,10,12,13,18-pentahydroxy-stearic acid. [U-14C]Linoleic acid was incorporated into the insoluble residue of rapidly expanding rosemary leaves. Depolymerization of the insoluble material followed by isolation of individual components and chemical degradation studies showed that linoleic acid was directly converted into 18-hydroxylinoleic acid, 18-hydroxy-9, 10-epoxyoctadec-12-enoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, 9,10,18-trihydroxy-12,13-epoxystearic acid, and 9,10,12,13,18-pentahydroxystearic acid. These results strongly suggest that, in the biosynthesis of the phytopolymer, linoleic acid is first converted into 18-hydroxylinoleic acid and that this precursor then undergoes sequential epoxidation-hydration at the Δ9 and Δ12 double bonds to yield 9,10,12,13,18-pentahydroxystearic acid.  相似文献   

19.
Summary A Pseudomonas sp., which has been isolated from orchard soil, is able to utilize cutin as a sole source of carbon. Products obtained from the culture filtrate corresponded to that obtained by alkaline hydrolysis of cutin.  相似文献   

20.
Lithium aluminum deuteride reduction released aliphatic monomers from the inner seed coat fraction but not from the outer seed coat fraction of mature apples. These monomers were identified by GC/MS and the results indicate that the inner coat of apple seed contains a cutin polymer with the major monomer acids being 18-hydroxyoctadec-9-enoic (31%), 9,10-epoxy-18-hydroxyoctadecanoic (28%) and 9,10,18-trihydroxyoctadecanoic (20 %). The monomer composition of this seed coat cuticular polymer was very similar in seeds taken from freshly harvested fruit and in those taken from fruit which had been stored at 4° for 6 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号