首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of our recent results, the N-terminal sequence of HIV-1 Tat protein as a natural competitive inhibitor of dipeptidyl peptidase IV (DP IV) is supposed to interact directly with the active site of DP IV hence mediating its immunosuppressive effects via specific DP IV interactions. Of special interest is the finding that amino acid substitutions of the Tat(1–9) peptide (MDPVDPNIE) in position 5 with S-isoleucine and in position 6 with S-leucine led to peptides with strongly reduced inhibitory activity suggesting differences in the solution conformation of the three analogues. Therefore, 1H NMR techniques in conjunction with molecular modelling have been used here to determine the solution structure of Tat(1–9), I5-Tat(1–9) and L6-Tat(1–9) and to examine the influence of amino acid exchanges on structural features of these peptides. The defined structures revealed differences in the conformations what might be the reason for different interactions of these Tat(1–9) analogues with certain amino acids of the active site of DP IV. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Using synthetic inhibitors, it has been shown that the ectopeptidase dipeptidyl peptidase IV (DP IV) (CD26) plays an important role in the activation and proliferation of T lymphocytes. The human immunodeficiency virus-1 Tat protein, as well as the N-terminal nonapeptide Tat(1-9) and other peptides containing the N-terminal sequence XXP, also inhibit DP IV and therefore T cell activation. Studying the effect of amino acid exchanges in the N-terminal three positions of the Tat(1-9) sequence, we found that tryptophan in position 2 strongly improves DP IV inhibition. NMR spectroscopy and molecular modeling show that the effect of Trp(2)-Tat(1-9) could not be explained by significant alterations in the backbone structure and suggest that tryptophan enters favorable interactions with DP IV. Data base searches revealed the thromboxane A2 receptor (TXA2-R) as a membrane protein extracellularly exposing N-terminal MWP. TXA2-R is expressed within the immune system on antigen-presenting cells, namely monocytes. The N-terminal nonapeptide of TXA2-R, TXA2-R(1-9), inhibits DP IV and DNA synthesis and IL-2 production of tetanus toxoid-stimulated peripheral blood mononuclear cells. Moreover, TXA2-R(1-9) induces the production of the immunosuppressive cytokine transforming growth factor-beta1. These data suggest that the N-terminal part of TXA2-R is an endogenous inhibitory ligand of DP IV and may modulate T cell activation via DP IV/CD26 inhibition.  相似文献   

3.
The N-terminal portion of HIV-1 Tat covering residues 1-9 is a competitive inhibitor of dipeptidyl peptidase IV (DP IV). We have used 1H NMR techniques, coupled with molecular dynamics methods, to determine the conformation of this peptide in the three diverse media: DMSO-d6, water (pH 2.7) and 40% HFA solution. The results indicate that in both DMSO-d6 and HFA the peptide has a tendency to acquire a type I beta-turn around the segment Asp5-Pro6-Asn7-IIe8. The N-terminal end is seen to be as a random coil. In water, the structure is best described as a left-handed polyproline type II (PPII) helix for the mid segment region Asp2 to Pro6. The structures obtained in this study have been compared with an earlier report on Tat (1-9).  相似文献   

4.
The human immunodeficiency virus 1 Tat protein suppresses antigen-, anti-CD3-and mitogen-induced activation of human T cells when added to T cell cultures. This activity is important for the development of AIDS because lymphocytes from HIV-infected individuals exhibit a similar antigen-specific dysfunction. Moreover, Tat was found to interact with dipeptidyl peptidase IV (DP IV). To find out the amino acid sequence important for the inhibition of the DP IV enzymatic activity we investigated N-terminal Tat(1–9) peptide analogues with amino acid substitutions in different positions. Interestingly, the exchange of Pro6 with Leu and Asp5 with Ile strongly diminished the DP IV inhibition by Tat(1–9). Based on data derived from one-and two-dimensional 1H NMR investigations the solution conformations of the three nonapeptides in water were determined by means of molecular dynamics simulations. These conformations were used for studies of the docking behavior of the peptides into a model of the active site of DP IV. The results suggest that several attractive interactions between the native Tat(1–9) and DP IV lead to a stable complex and that the reduced affinity of both L6-Tat(1–9) and I5-Tat(1–9) derivatives might be caused by conformational alterations in comparison to the parent peptide.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089480040200  相似文献   

5.
CD26 or dipeptidyl-peptidase IV (DPPIV) is engaged in immune functions by co-stimulatory effects on activation and proliferation of T lymphocytes, binding to adenosine deaminase, and regulation of various chemokines and cytokines. DPPIV peptidase activity is inhibited by both Tat protein from human immunodeficiency virus (HIV)-1 and its N-terminal nonapeptide Tat-(1-9) with amino acid sequence MDPVDPNIE, suggesting that DPPIV mediates immunosuppressive effects of Tat protein. The 2.0- and 3.15-A resolution crystal structures of the binary complex between human DPPIV and nonapeptide Tat-(1-9) and the ternary complex between the variant MWPVDPNIE, called Trp(2)-Tat-(1-9), and DPPIV bound to adenosine deaminase show that Tat-(1-9) and Trp(2)-Tat-(1-9) are located in the active site of DPPIV. The interaction pattern of DPPIV with Trp(2)-Tat-(1-9) is tighter than that with Tat-(1-9), in agreement with inhibition constants (K(i)) of 2 x 10(-6) and 250 x 10(-6) m, respectively. Both peptides cannot be cleaved by DPPIV because the binding pockets of the N-terminal 2 residues are interchanged compared with natural substrates: the N-terminal methionine occupies the hydrophobic S1 pocket of DPPIV that normally accounts for substrate specificity by binding the penultimate residue. Because the N-terminal sequence of the thromboxane A2 receptor resembles the Trp(2)-Tat-(1-9) peptide, a possible interaction with DPPIV is postulated.  相似文献   

6.
Aminopeptidase P (APP), dipeptidyl peptidase II (DP II), dipeptidyl peptidase IV (DP IV) and prolyl oligopeptidase (POP) are proline specific peptidases. Hence, they are able to cleave peptide bonds containing the imino acid proline. Amino acid pyrrolidides (Pyrr) and thiazolidides (Thia) are well-known product analogue inhibitors of DP IV and POP. For the first time we describe the influence of a thioxo amide bond, incorporated into these compounds, on the inhibition of the proline specific peptidases. Taking into account the substrate specificity of these peptidases, we have synthesized Xaa-psi[CS-N]-Pyrr and Xaa-psi[CS-N]-Thia of the amino acids Ala, Phe, Val and Ile. The inhibition constants were determined for the above mentioned proline specific peptidases isolated from different sources. As a result, the serine proteases DP II, DP IV and POP were inhibited competitively, whereas metal-dependent APP displayed a linear mixed-type inhibition with inhibition constants up to 10(-4) M. Thioxylation of Xaa-Pyrr and Xaa-Thia led to a slight decrease of inhibition of DP IV and POP compared to Xaa-Pyrr and Xaa-Thia, though the inhibition constants were still in the range up to 10(-7) M. As Xaa-Thia exist as two isomers, we investigated isomer specific inhibition with regard to DP IV. Thus, our studies have revealed that DP IV was only inhibited by the Z isomer of the Xaa-psi[CS-N]-Thia. For the first time, Xaa-Pyrr and Xaa-Thia were characterized as inhibitors of DP II with inhibition constants in the micromolar range. In contrast to DP IV inhibition, the Xaa-psi[CS-N]-Pyrr and Xaa-psi[CS-N]-Thia have proven to be more potent inhibitors of DP II than the corresponding Xaa-Pyrr and Xaa-Thia. Thus, these Xaa-psi[CS-N]-Thia are new potent inhibitors especially suitable for DP II with K(i) values ranging in the upper nanomolar concentration.  相似文献   

7.
A synthetic peptide, DP178, containing amino acids 127 to 162 of the human immunodeficiency virus type 1 (HIV-1) gp41 Env glycoprotein, is a potent inhibitor of virus infection and virus mediated cell-to-cell fusion (C. Wild, T. Greenwell, and T. Matthews, AIDS Res. Hum. Retroviruses 9:1051–1053, 1993). In an effort to understand the mechanism of action of this peptide, we derived resistant variants of HIV-1IIIB and NL4-3 by serial virus passage in the presence of increasing doses of the peptide. Sequence analysis of the resistant isolates suggested that a contiguous 3-amino-acid sequence within the amino-terminal heptad repeat motif of gp41 was associated with resistance. Site-directed mutagenesis studies confirmed this observation and indicated that changes in two of these three residues were necessary for development of the resistant phenotype. Direct binding of DP178 to recombinant protein and synthetic peptide analogs containing the wild-type and mutant heptad repeat sequences revealed a strong correlation between DP178 binding and the biological sensitivity of the corresponding virus isolates to DP178. The results are discussed from the standpoints of the mechanism of action of DP178 and recent crystallographic information for a core structure of the gp41 ectodomain.  相似文献   

8.
Dipeptidyl peptidase IV (DP IV) is a membrane peptidase playing a significant role in the process of activation and proliferation of human thymus-derived lymphocytes. This conclusion is drawn from (1) the induction of this enzyme on mitogen-activated T lymphocytes (cf. Sch?n, E. & Ansorge, S. (1990) Biol. Chem. Hoppe-Seyler 371, 699-705) and (2) the impairment of different functions of activated T cells in the presence of specific inhibitors and antibodies against DP IV (Sch?n, E. & al. (1987) Eur. J. Immunol 17, 1821-1826). This paper is aimed at testing new active site-specific peptide inhibitors for their efficiency as inhibitors of lymphocyte DP IV and DNA synthesis of mitogen-stimulated lymphocytes. These inhibitors comprise (i) diacylhydroxylamine derivatives of Xaa-Pro or Xaa-Ala peptides, (ii) different oligopeptides with N-terminal Xaa-Pro-sequences, and (iii) amino-acid amides of the pyrrolidide and the thiazolidide type. The thiazolidides of epsilon-(4-nitrobenzyloxycarbonyl)-L-lysine and of L-isoleucine as well as Ala-Pro-nitrobenzoylhydroxylamine are the most effective inhibitors in both test systems, yielding half-maximal inhibitory concentrations in the micromolar range. Cell viability was not impaired in this effective concentration range. Other inhibitors of DP IV are one to two orders of magnitude less efficient in the suppression of lymphocyte proliferation.  相似文献   

9.
M Green  M Ishino  P M Loewenstein 《Cell》1989,58(1):215-223
The HIV-1 Tat protein is a potent trans-activator essential for virus replication. We reported previously that HIV-1 Tat peptides containing residues 37-48 (mainly region II), a possible activating region, and residues 49-57 (region III), a nuclear targeting and putative nucleic acid binding region, possess minimal but distinct trans-activator activity. The presence of residues 58-72 (region IV) greatly enhances trans-activation. We postulate that Tat mutant peptides with an inactive region II and a functional region III can behave as dominant negative mutants. We synthesized minimal domain peptides containing single amino substitutions for amino acid residues within region II that are conserved among different HIV isolates. We identify four amino acid residues whose substitution within Tat minimal domain peptides leads to defects in transactivation. Some of these mutants are trans-dominant in several peptide backbones, since they strongly inhibit trans-activation by wild-type Tat protein added to cells or expressed from microinjected plasmid. Significantly, trans-activation of integrated HIV-LTRCAT is blocked by some trans-dominant mutant peptides. These results suggest an attractive approach for the development of an AIDS therapy.  相似文献   

10.
11.
12.
13.
CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors.  相似文献   

14.
Truncation of a peptide substrate in the N-terminus and replacement of its scissile amide bond with a non-cleavable reduced bond results in a potent inhibitor of HIV-1 protease. A series of such inhibitors has been synthesized, and S2-S3' subsites of the protease binding cleft mapped. The S2 pocket requires bulky Boc or PIV groups, large aromatic Phe residues are preferred in P1 and P1' and Glu in P2'. The S3' pocket prefers Phe over small Ala or Val. Introduction of a Glu residue into the P2' position yields a tight-binding inhibitor of HIV-1 protease, Boc-Phe-[CH2-NH]-Phe-Glu-Phe-OMe, with a subnanomolar inhibition constant. The relevant peptide derived from the same amino acid sequence binds to the protease with a Ki of 110 nM, thus still demonstrating a good fit of the amino acid residues into the protease binding pockets and also the importance of the flexibility of P1-P1' linkage for proper binding. A new type of peptide bond mimetic, N-hydroxylamine -CH2-N(OH)-, has been synthesized. Binding of hydroxylamino inhibitor of HIV-1 protease is further improved with respect to reduced-bond inhibitor.  相似文献   

15.
16.
17.
A series of inhibitors containing all possible isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid was synthesized and tested for inhibition of HIV-1 protease. Incorporation of the (3S,4S) isomer of the t-butyloxycarbonyl protected amino acid into the sequence Glu-Phe resulted in a potent inhibitor of HIV-1 protease (Ki = 63 nM). This inhibitor is at least 47-times more potent than the inhibitors containing other isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid, indicating that the (3S,4S) isomer is the preferred isomer for binding to HIV-1 protease.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) Tat repressed the p53-dependent gene expression through its C-terminal domain of Tat (amino acid residues 73-86) independent of the involvement of NF-kappaB and coactivator CBP/p300. Although Tat did not directly bind to p53, this repression required the N-terminal domain of p53. In contrast, Tat and p53 cooperated in the activation of HIV-1 gene expression. Thus, the cross-talk between Tat and p53 may be linked with cellular transformation by HIV-1 infection or activation of HIV-1 replication.  相似文献   

19.
Proteasomes belong to the N-terminal nucleophile group of amidases and function through a novel proteolytic mechanism, in which the hydroxyl group of the N-terminal threonines is the catalytic nucleophile. However, it is unclear why threonine has been conserved in all proteasomal active sites, because its replacement by a serine in proteasomes from the archaeon Thermoplasma acidophilum (T1S mutant) does not alter the rates of hydrolysis of Suc-LLVY-amc (Seemüller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. (1995) Science 268, 579-582) and other standard peptide amide substrates. However, we found that true peptide bonds in decapeptide libraries were cleaved by the T1S mutant 10-fold slower than by wild type (wt) proteasomes. In degrading proteins, the T1S proteasome was 3.5- to 6-fold slower than the wt, and this difference increased when proteolysis was stimulated using the proteasome-activating nucleotidase (PAN) ATPase complex. With mutant proteasomes, peptide bond cleavage appeared to be rate-limiting in protein breakdown, unlike with wt. Surprisingly, a peptide ester was hydrolyzed by both particles much faster than the corresponding amide, and the T1S mutant cleaved it faster than the wt. Moreover, the T1S mutant was inactivated by the ester inhibitor clasto-lactacystin-beta-lactone severalfold faster than the wt, but reacted with nonester irreversible inhibitors at similar rates. T1A and T1C mutants were completely inactive in all these assays. Thus, proteasomes lack additional active sites, and the N-terminal threonine evolved because it allows more efficient protein breakdown than serine.  相似文献   

20.
We previously reported that lysozyme accounts for anti-HIV activity associated with the beta-core fraction of human chorionic gonadotropin [Lee-Huang, S., Huang, P. L., Sun, Y., Kung, H. F., Blithe, D. L. & Chen, H. C. (1999) Proc Natl Acad Sci U S A 96, 2678-81]. To define the structural and sequence requirements for anti-HIV activity, we carried out peptide fragmentation and activity mapping of human lysozyme. We identified two peptides that consist of 18 and 9 amino acids of human lysozyme (HL18 and HL9), corresponding to residues 98-115 and 107-115. HL18 and HL9 are potent inhibitors of HIV-1 infection and replication with EC(50)s of 50 to 55 nM, comparable to intact lysozyme. Scrambling the sequence or substitution of key arginine or tryptophan residues results in loss of antiviral activity. HL9, with the sequence RAWVAWRNR, is the smallest peptide we identified with full anti-HIV activity. It forms a pocket with its basic residues on the surface of the molecule. HL9 exists as an alpha-helix in native human lysozyme, in a region of the protein distinct from the muramidase catalytic site. Monte Carlo peptide folding energy minimizing simulation modeling and CD studies indicate that helical propensity does not correlate with antiviral activity. HL9 blocks HIV-1 viral entrance and replication, and modulates gene expression of HIV-infected cells, affecting pathways involved in survival, stress, TGFbeta, p53, NFkappaB, protein kinase C and hedgehog signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号