首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The ultrastructural changes in pancreatic cells were studied following glucose-induced insulin secretion in vitro, at two different extracellular pH (7.4 and 7.8). The pancreata perfused at pH 7.4 exhibited a biphasic insulin response to glucose challenge together with signs of increased emiocytotic activity and numerous microtubules in the cells. Conversely, the pancreata perfused at pH 7.8 showed a significant decrease in insulin secretion, and their cells revealed scarce emiocytotic images and a marked increase of intracellular granulolysis. These results represent the ultrastructural correlate of the reduced insulin secretion produced by metabolic alkalosis in the perfused rat pancreas.The authors wish to thank Mrs. Elma P. de Gagliardino and Mrs. Susana Rivas for excellent technical assistance.This research was partially supported by funds from CONICET and CIC, Pcia de Bs.As. C.L. Gómez Dumm, O.R. Rebolledo and J.J. Gagliardino are members of Carrera del Investigador del CONICET (Argentina)  相似文献   

3.
4.
Collectrin is a novel target gene of hepatocyte nuclear factor-1α in pancreatic β-cells and controls insulin exocytosis. Although glucose is known to stimulate the expression of genes of the insulin secretory pathway, there is no information on how glucose regulates collectrin expression. We investigated the effects of glucose on the expression of collectrin in MIN6 β-cell line. Glucose, in a dose-dependent manner, increased collectrin protein levels without changing collectrin mRNA levels and protein stability, indicating that glucose stimulation of collectrin protein expression is primarily mediated at a translational level. Although mannose and pyruvate also increased collectrin protein expression level, neither 2-deoxyglucose, mitochondrial fuels leucine and glutamate, sulphonylurea nor Ca2+ channel blockers, mimicked the effects of glucose. These data indicate the involvement of mitochondrial TCA cycle intermediates, distal to pyruvate, in the regulation of collectrin protein expression in β-cells.  相似文献   

5.
A century has passed since the Nobel Prize winning discovery of insulin, which still remains the mainstay treatment for type 1 diabetes mellitus (T1DM) to this day. True to the words of its discoverer Sir Frederick Banting, “insulin is not a cure for diabetes, it is a treatment”, millions of people with T1DM are dependent on daily insulin medications for life. Clinical donor islet transplantation has proven that T1DM is curable, however due to profound shortages of donor islets, it is not a mainstream treatment option for T1DM. Human pluripotent stem cell derived insulin-secreting cells, pervasively known as stem cell-derived β cells (SC-β cells), are a promising alternative source and have the potential to become a T1DM treatment through cell replacement therapy. Here we briefly review how islet β cells develop and mature in vivo and several types of reported SC-β cells produced using different ex vivo protocols in the last decade. Although some markers of maturation were expressed and glucose stimulated insulin secretion was shown, the SC-β cells have not been directly compared to their in vivo counterparts, generally have limited glucose response, and are not yet fully matured. Due to the presence of extra-pancreatic insulin-expressing cells, and ethical and technological issues, further clarification of the true nature of these SC-β cells is required.  相似文献   

6.
Thorens B 《Cell metabolism》2011,14(4):439-440
The molecular mechanisms linking diet, obesity, and type 2 diabetes are still poorly understood. In a recent paper, Ohtsubo et?al. (2011) show that high lipid levels induce nuclear exclusion of Foxa2 and HNF1α in β cells, leading to impaired expression and glycosylation of proteins controlling glucose-stimulated insulin secretion.  相似文献   

7.
Regeneration therapy of pancreatic beta cells: towards a cure for diabetes?   总被引:5,自引:0,他引:5  
Regeneration therapy is an approach which could potentially move us towards a cure for type 1 diabetes. It is classified into three categories: (1) In vitro regeneration therapy using transplanted cultured cells, including ES cells, pancreatic stem cells, and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation. (2) In ex vivo regeneration therapy, patients' own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta cells in vitro. At present, however, insulin-producing cells cannot be generated from bone marrow stem cells. (3) In in vivo regeneration therapy, impaired tissues regenerate from patients' own cells in vivo. beta-Cell neogenesis from non-beta-cells and beta-cell proliferation in vivo have been considered, particularly as regeneration therapies for type 2 diabetes. Regeneration therapy of pancreatic beta cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy, and drug therapy to promote beta-cell proliferation and neogenesis, and it is hoped that these strategies will, in the future, provide a cure for diabetes.  相似文献   

8.
9.
10.
11.
12.
Bursts of repetitive action potentials are closely related to the regulation of glucose-induced insulin secretion in pancreatic β cells. Mathematical studies with simple β-cell models have established the central principle that the burst-interburst events are generated by the interaction between fast membrane excitation and slow cytosolic components. Recently, a number of detailed models have been developed to simulate more realistic β cell activity based on expanded findings on biophysical characteristics of cellular components. However, their complex structures hinder our intuitive understanding of the underlying mechanisms, and it is becoming more difficult to dissect the role of a specific component out of the complex network. We have recently developed a new detailed model by incorporating most of ion channels and transporters recorded experimentally (the Cha-Noma model), yet the model satisfies the charge conservation law and reversible responses to physiological stimuli. Here, we review the mechanisms underlying bursting activity by applying mathematical analysis tools to representative simple and detailed models. These analyses include time-based simulation, bifurcation analysis and lead potential analysis. In addition, we introduce a new steady-state I-V (ssI-V) curve analysis. We also discuss differences in electrical signals recorded from isolated single cells or from cells maintaining electrical connections within multi-cell preparations. Towards this end, we perform simulations with our detailed pancreatic β-cell model.  相似文献   

13.
In vitro generation of insulin-producing cells from stem / progenitor cells presents a promising approach to overcome the scarcity of donor pancreas for cell replacement therapy in diabetes. In this regard, pancreatic islet-derived progenitors are proposed to be a better alternative as they are obtained from cells that can efficiently produce insulin under physiological conditions and are supposed to retain the epigenetic memory for producing 'insulin' even after transition to a mesenchymal-like cell type. However, in last few years there has been significant debate in understanding the origin of such islet-derived mesenchymal-like progenitor cells in vitro. The initial idea proposed that human insulin-producing β-cells contribute to generation of a population of islet-derived endocrine progenitor cells by a process of epithelial-to-mesenchymal transition (EMT) in vitro. This idea was challenged by a series of lineage-tracing studies in mice demonstrating the non-beta origin of mesenchymal cells in culture. However, recent observations made by two independent groups confirm that human islet insulin-producing cells can proliferate and contribute to mesenchymal-like cell populations in vitro. Here, we provide a fact sheet about the observations that are till now reported by several groups regarding origin of mesenchymal-like cells in the cultures of pancreatic islets.  相似文献   

14.
Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β cells is still needed. Using a zebrafish model of diabetes, we screened ~7,000 small molecules to identify enhancers of β cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β cell regeneration was the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA), which, acting through the adenosine receptor A2aa, increased β cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes.  相似文献   

15.
The emergence of bihormonal (BH) cells expressing insulin and glucagon has been reported under diabetic conditions in humans and mice. Whereas lineage tracing studies demonstrated that glucagon-producing α cells can be reprogrammed into BH cells, the underlying dynamics of the conversion process remain poorly understood. In the present study, we investigated the identities of pancreatic endocrine cells by genetic lineage tracing under diabetic conditions. When β-cell ablation was induced by alloxan (ALX), a time-dependent increase in BH cells was subsequently observed. Lineage tracing experiments demonstrated that BH cells originate from α cells, but not from β cells, in ALX-induced diabetic mice. Notably, supplemental insulin administration into diabetic mice resulted in a significant increase in α-cell-derived insulin-producing cells that did not express glucagon. Furthermore, lineage tracing in Ins2Akita diabetic mice demonstrated a significant induction of α-to-β conversion. Thus, adult α cells have plasticity, which enables them to be reprogrammed into insulin-producing cells under diabetic conditions, and this can be modulated by supplemental insulin administration.  相似文献   

16.
17.
Acetylcholinesterase (AChE) expression is pivotal during apoptosis. Indeed, AChE inhibitors partially protect cells from apoptosis. Insulin-dependent diabetes mellitus (IDDM) is characterized in part by pancreatic β-cell apoptosis. Here, we investigated the role of AChE in the development of IDDM and analyzed protective effects of AChE inhibitors. Multiple low-dose streptozotocin (MLD-STZ) administration resulted in IDDM in a mouse model. Western blot analysis, cytochemical staining, and immunofluorescence staining were used to detect AChE expression in MIN6 cells, primary β cells, and apoptotic pancreatic β cells of MLD-STZ-treated mice. AChE inhibitors were administered intraperitoneally to the MLD-STZ mice for 30 days. Blood glucose, plasma insulin, and creatine levels were measured, and glucose tolerance tests were performed. The effects of AChE inhibitors on MIN6 cells were also evaluated. AChE expression was induced in the apoptotic MIN6 cells and primary β cells in vitro and pancreatic islets in vivo when treated with STZ. Induction and progressive accumulation of AChE in the pancreatic islets were associated with apoptotic β cells during IDDM development. The administration of AChE inhibitors effectively decreased hyperglycemia and incidence of diabetes, and restored plasma insulin levels and plasma creatine clearance in the MLD-STZ mice. AChE inhibitors partially protected MIN6 cells from the damage caused by STZ treatment. Induction and accumulation of AChE in pancreatic islets and the protective effects of AChE inhibitors on the onset and development of IDDM indicate a close relationship between AChE and IDDM.  相似文献   

18.
19.
20.
Diabetes, a disease resulting from loss of functional β cells, is globally an increasingly important condition. Based on the islet-differentiation ability of ductal epithelial cells and stimulating β cell proliferation ability of the Reg Iα gene, we aimed to establish an in vitro pancreatic β cell proliferation model for screening therapeutic drugs of diabetes in the future. Pancreatic ductal epithelial cells were isolated from male Wistar rats, and induced to differentiate into pancreatic β cells. Immunofluorescence staining assay, western blot, RT-PCR analysis, and dithizone staining were used to characterize the cells. Rat Reg Iα protein was transiently expressed in vitro by transfection of HEK 293 cells with the PCMV6-entry-REG Ia plasmid, and expression was verified by RT-PCR analysis, proliferation assay, and apoptosis assay. The pancreatic β cell proliferation model was further validated by a proliferation assay using differentiated pancreatic β cells treated with transfection supernatant. Finally, we have successfully established an in vitro pancreatic β cells proliferation model using transiently expressed rat Reg Iα protein and differentiated pancreatic β cells from pancreatic ductal epithelial cells. This model could be used as a platform to screen new drugs for islet neogenesis to cure diabetes, especially Chinese herbal drugs in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号