首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral discovery and sequence recovery using DNA microarrays   总被引:12,自引:1,他引:11       下载免费PDF全文
Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS) in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.  相似文献   

2.
Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decomposition phylogenetic techniques on the SARS virus replicase, surface spike, matrix, and nucleocapsid proteins to reveal the evolutionary origin of this recently emerging infectious agent. The analyses support a mammalian-like origin for the replicase protein, an avian-like origin for the matrix and nucleocapsid proteins, and a mammalian-avian mosaic origin for the host-determining spike protein. A bootscan recombination analysis of the spike gene revealed high nucleotide identity between the SARS virus and a feline infectious peritonitis virus throughout the gene, except for a 200- base-pair region of high identity to an avian sequence. These data support the phylogenetic analyses and suggest a possible past recombination event between mammalian-like and avian-like parent viruses. This event occurred near a region that has been implicated to be the human receptor binding site and may have been directly responsible for the switch of host of the SARS coronavirus from animals to humans.  相似文献   

3.
Emerging viral infections in a rapidly changing world   总被引:6,自引:0,他引:6  
Emerging viral infections in both humans and animals have been reported with increased frequency in recent years. Recent advances have been made in our knowledge of some of these, including severe acute respiratory syndrome-associated coronavirus, influenza A virus, human metapneumovirus, West Nile virus and Ebola virus. Research efforts to mitigate their effects have concentrated on improved surveillance and diagnostic capabilities, as well as on the development of vaccines and antiviral agents. More attention needs to be given to the identification of the underlying causes for the emergence of infectious diseases, which are often related to anthropogenic social and environmental changes. Addressing these factors might help to decrease the rate of emergence of infectious diseases and allow the transition to a more sustainable society.  相似文献   

4.
Viruses remain a significant public health concern worldwide. Recently, humanity has faced deadly viral infections, including Zika, Ebola and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The threat is associated with the ability of the viruses to mutate frequently and adapt to different hosts. Thus, there is the need for robust detection and classification of emerging virus strains to ensure that humanity is prepared in terms of vaccine and drug developments. A point or stand-off biosensor that can detect and classify viruses from indoor and outdoor environments would be suited for viral surveillance. Light detection and ranging (LiDAR) is a facile and versatile tool that has been explored for stand-off detection in different environments including atmospheric, oceans and forest sensing. Notably, laser-induced fluorescence-light detection and ranging (LIF-LiDAR) has been used to identify MS2 bacteriophage on artificially contaminated surgical equipment or released amidst other primary biological aerosol particles in laboratory-like close chamber. It has also been shown to distinguish between different picornaviruses. Currently, the potentials of the LIF-LiDAR technology for real-time stand-off surveillance of pathogenic viruses in indoor and outdoor environments have not been assessed. Considering the increasing applications of LIF-LiDAR for potential microbial pathogens detection and classification, and the need for more robust tools for viral surveillance at safe distance, we critically evaluate the prospects and challenges of LIF-LiDAR technology for real-time stand-off detection and classification of potentially pathogenic viruses in various environments.  相似文献   

5.
严重急性呼吸综合征是SARS-CoV引起的一种重要新发传染病,其致病机制的研究对于防治该病十分必要。为了利用反向遗传学技术研究SARS-CoV的致病机制,将覆盖SARS-CoVBJ01株基因组全长的7个cDNA片段纯化后进行体外连接,构建基因组全长cDNA分子,以其为模板,使用T7RNA聚合酶系统在体外进行转录,获得病毒RNA。用电穿孔转染法将转录体RNA导入VeroE6细胞,可观察到典型的SARS-CoV致细胞病变作用。对收获的恢复病毒采用RT-PCR方法进行鉴定,结果表明获得的恢复病毒与SARS-CoVBJ01株原病毒序列一致。以针对SARS-CoV的抗体对感染细胞作间接免疫荧光反应,证明获得了具有特异感染性的恢复病毒。同时用细胞病变法和空斑试验测定了恢复病毒及其亲本毒株的病毒滴度,结果表明二者在致病性上没有明显差异,恢复病毒具有与原型株相似的生物学特性。SARS-CoVBJ01株基因组全长cDNA的成功构建及对恢复病毒生物学性质的研究将为进一步探索SARS-CoV致病的分子机制及研制新型疫苗奠定良好的基础。  相似文献   

6.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus. Since its associated morbidity and mortality have been postulated to be due to immune dysregulation, we investigated which of the viral proteins is responsible for chemokine overexpression. To delineate the viral and cellular factor interactions, the role of four SARS coronavirus proteins, including nonstructural protein 1 (nsp-1), nsp-5, envelope, and membrane, were examined in terms of cytokine induction. Our results showed that the SARS coronavirus nsp-1 plays an important role in CCL5, CXCL10, and CCL3 expression in human lung epithelial cells via the activation of NF-kappaB.  相似文献   

7.
Engineering recombinant viruses is a pre‐eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on “infectious subgenomic amplicons” (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS‐CoV‐2 and also to the feline enteric coronavirus. In both cases we rescue wild‐type viruses with biological characteristics similar to original strains. Specific mutations and fluorescent red reporter genes can be readily incorporated into the SARS‐CoV‐2 genome enabling the generation of a genomic variants and fluorescent reporter strains for in vivo experiments, serological diagnosis, and antiviral assays. The swiftness and simplicity of the ISA method has the potential to facilitate the advance of coronavirus reverse genetics studies, to explore the molecular biological properties of the SARS‐CoV‐2 variants, and to accelerate the development of effective therapeutic reagents.  相似文献   

8.
Severe acute respiratory syndrome coronavirus (SARS-CoV) moved into humans from a reservoir species and subsequently caused an epidemic in its new host. We know little about the processes that allowed the cross-species transfer of this previously unknown virus. I discuss what we have learned about the movement of viruses into humans from studies of influenza A, both how it crossed from birds to humans and how it subsequently evolved within the human population. Starting with a brief review of severe acute respiratory syndrome to highlight the kinds of problems we face in learning about this viral disease, I then turn to influenza A, focusing on three topics. First, I present a reanalysis of data used to test the hypothesis that swine served as a "mixing vessel" or intermediate host in the transmission of avian influenza to humans during the 1918 "Spanish flu" pandemic. Second, I review studies of archived viruses from the three recent influenza pandemics. Third, I discuss current limitations in using molecular data to study the evolution of infectious disease. Although influenza A and SARS-CoV differ in many ways, our knowledge of influenza A may provide important clues about what limits or favours cross-species transfers and subsequent epidemics of newly emerging pathogens.  相似文献   

9.
Zhou Z  Li X  Liu Q  Hu D  Yue X  Ni J  Yu X  Zhai X  Galliher-Beckley A  Chen N  Shi J  Tian K 《Journal of virology》2012,86(11):6373-6374
A highly pathogenic strain of porcine reproductive and respiratory syndrome virus (PRRSV), characterized by a discontinuous 30-amino-acid deletion in its Nsp2-coding region, has been emerging in China since 2006. Here, we report the complete genomic sequence of two novel Chinese virulent PRRSV variants with additional NSP2-gene deletions, which will help us understand the molecular and evolutionary characteristics of PRRSV in Asia.  相似文献   

10.
A respiratory disease syndrome has been observed in large numbers of wild shingleback lizards (Tiliqua rugosa) admitted to wildlife care facilities in the Perth metropolitan region of Western Australia. Mortality rates are reportedly high without supportive treatment and care. Here we used next generation sequencing techniques to screen affected and unaffected individuals admitted to Kanyana Wildlife Rehabilitation Centre in Perth between April and December 2015, with the resultant discovery of a novel nidovirus significantly associated with cases of respiratory disease according to a case definition based on clinical signs. Interestingly this virus was also found in 12% of apparently healthy individuals, which may reflect testing during the incubation period or a carrier status, or it may be that this agent is not causative in the disease process. This is the first report of a nidovirus in lizards globally. In addition to detection of this virus, characterisation of a 23,832 nt segment of the viral genome revealed the presence of characteristic nidoviral genomic elements providing phylogenetic support for the inclusion of this virus in a novel genus alongside Ball Python nidovirus, within the Torovirinae sub-family of the Coronaviridae. This study highlights the importance of next generation sequencing technologies to detect and describe emerging infectious diseases in wildlife species, as well as the importance of rehabilitation centres to enhance early detection mechanisms through passive and targeted health surveillance. Further development of diagnostic tools from these findings will aid in detection and control of this agent across Australia, and potentially in wild lizard populations globally.  相似文献   

11.
RNA viruses are the causative agents for AIDS, influenza, SARS, and other serious health threats. Development of rapid and broadly applicable methods for complete viral genome sequencing is highly desirable to fully understand all aspects of these infectious agents as well as for surveillance of viral pandemic threats and emerging pathogens. However, traditional viral detection methods rely on prior sequence or antigen knowledge. In this study, we describe sequence-independent amplification for samples containing ultra-low amounts of viral RNA coupled with Illumina sequencing and de novo assembly optimized for viral genomes. With 5 million reads, we capture 96 to 100% of the viral protein coding region of HIV, respiratory syncytial and West Nile viral samples from as little as 100 copies of viral RNA. The methods presented here are scalable to large numbers of samples and capable of generating full or near full length viral genomes from clone and clinical samples with low amounts of viral RNA, without prior sequence information and in the presence of substantial host contamination.  相似文献   

12.
13.
The coronavirus disease 2019 (COVID-19) global pandemic evoked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a major public health problem with significant morbidity and mortality. Understanding the pathogenesis and molecular mechanisms underlying this novel virus is crucial for both fundamental research and clinical trials in order to devise effective therapies and vaccination regimens. Basic research on SARS-CoV-2 largely depends on ex vivo models that allow viral invasion and replication. Organoid models are now emerging as a valuable tool to investigate viral biology and disease progression, serving as an efficient platform to investigate potential therapies for COVID-19. Here, we summarize various human stem cell-derived organoid types employed in SARS-CoV-2 studies. We highlight key findings from these models, including cell tropisms and molecular mechanisms in viral infection. We also describe their use in identifying potential therapeutic agents against SARS-CoV-2. As more and more advanced organoids emerge, they will facilitate the understanding of disease pathogenesis for drug development in this dreaded pandemic.  相似文献   

14.
何丽红  刘文军  李晶 《生物工程学报》2020,36(10):1961-1969
冠状病毒是一类具有囊膜包裹的线性单股正链RNA病毒,在自然界广泛存在,可引起不同程度的呼吸性传染病。新型冠状病毒是一种新发突发病毒,对各类人群均易感。截止目前,该病已经在世界范围内广泛流行,对公共卫生安全构成极大的威胁。文中从冠状病毒及新型冠状病毒的基因组特征、关键蛋白、对宿主的感染和复制的角度加以综述,旨在为获得病毒侵染宿主细胞致病机制的探究提供理论依据,也为特异的抗病毒药物的研发提供基础支持。  相似文献   

15.
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater than 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding.  相似文献   

16.
The coronavirus disease 2019 (COVID-19) pandemic was caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus has challenged civilization and modern science in ways that few infectious diseases and natural disasters have previously, causing globally significant human morbidity and mortality and triggering economic downturns across financial markets that will be dealt with for generations. Despite this, the pandemic has also brought an opportunity for humanity to come together and participate in a shared scientific investigation. Clinically, SARS-CoV-2 is associated with lower mortality rates than other recently emerged coronaviruses, such as SARS-CoV and the Middle East respiratory syndrome coronavirus (MERS-CoV). However, SARS-CoV-2 exhibits efficient human-to-human spread, with transmission often occurring before symptom recognition; this feature averts containment strategies that had worked previously for SARS-CoV and MERS-CoV. Severe COVID-19 disease is characterized by dysregulated inflammatory responses associated with pulmonary congestion and intravascular coagulopathy leading to pneumonia, vascular insults, and multiorgan disease. Approaches to treatment have combined supportive care with antivirals, such as remdesivir, with immunomodulatory medications, including corticosteroids and cytokine-blocking antibody therapies; these treatments have advanced rapidly through clinical trials. Innovative approaches to vaccine development have facilitated rapid advances in design, testing, and distribution. Much remains to be learned about SARS-CoV-2 and COVID-19, and further biomedical research is necessary, including comparative medicine studies in animal models. This overview of COVID-19 in humans will highlight important aspects of disease, relevant pathophysiology, underlying immunology, and therapeutics that have been developed to date.

In December 2019, a cluster of cases of pneumonia without a clear etiology occurred in Wuhan, China. With remarkable speed and efficiency, the etiology of this illness was soon identified as a novel coronavirus; the complete viral genome was sequenced and published on January 10, 2020.182 These events introduced the world to coronavirus disease 2019 (COVID-19). The disease, now known to be caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into the most significant pandemic of recent times. In less than a year since the virus was first recognized, multiple candidate vaccines were developed worldwide, and some of them rapidly progressed to clinical trials and widespread administration. As the pandemic continues, a number of sequence variants of the virus have emerged around the world. This continued viral evolution highlights the need for continued biomedical research to facilitate understanding of the pathogenesis of COVID-19, seeking innovative therapeutic and preventative strategies for the current and possibly future pandemics. This article will review aspects of SARS-CoV-2 infection of humans and COVID-19, focusing on important aspects of clinical disease, pathophysiology, immunology, and the development of therapeutic and preventative measures to provide context for discussion of the animal models used to study SARS-CoV-2 and COVID-19.  相似文献   

17.
We determined prevalence of antibody to selected viral pathogens important for domestic pigs and livestock in 556 wild boar (Sus scrofa) sera collected during 2005-06 and 2009-10 in four counties in Croatia. These counties account for an important part of the Croatian commercial pig production and have a high density of wild boars. Samples were tested for antibodies to porcine parvovirus (PPV), Aujeszky's disease virus (ADV), porcine circovirus type 2 (PCV2), swine influenza virus, porcine respiratory and reproductive syndrome virus (PRRSV), porcine respiratory coronavirus (PRCV), transmissible gastroenteritis virus, and swine vesicular disease virus (SVDV). Antibodies to all of the infectious pathogens except SVDV were detected. There was a statistically significant difference in prevalence between the two periods for PPV, ADV, PCV2, PRRSV, and PRCV, with a higher prevalence of PPV and ADV in the 2009-10 period (P<0.05). During the same period, the prevalence of PCV2, PRRSV, and PRCV was lower (P<0.05). Our results provide information on the current disease exposure and health status of wild boars in Croatia and suggest that wild boars may act as a reservoir for several pathogens and a source of infection for domestic pigs and other livestock as well as humans, especially for ADV.  相似文献   

18.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel SARS-associated coronavirus (SARS-CoV). The clinical characteristics are high fever, rapidly progressive diffuse pneumonitis and respiratory distress. It is highly infectious through intimate contact or direct contact with infectious body fluids. Outbreaks within communities and hospitals have been reported. Development of rapid and reliable diagnostic tools is urgently needed. We developed an immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), using whole virus antigen of SARS-CoV. Eighty-six serum samples collected from patients who were hospitalized for other causes were examined to determine the cut-off O.D. value. The cut-off O.D. value was defined as 0.175 by calculating the mean O.D. value of the 86 sera plus 3 standard deviations. To determine the sensitivity and specificity of the ELISA, 56 positive sera and 204 negative sera were tested. The sensitivity was 96.4% and the specificity was 100%. The results suggest that the IgG ELISA using whole virus antigen of SARS-CoV has a high sensitivity and specificity in detecting SARS IgG antibodies. This IgG ELISA is a powerful tool for serodiagnosis of SARS.  相似文献   

19.
Human adenovirus serotype 4 (HAdV-4) is a reemerging viral pathogenic agent implicated in epidemic outbreaks of acute respiratory disease (ARD). This report presents a genomic and bioinformatics analysis of the prototype 35,990-nucleotide genome (GenBank accession no. AY594253). Intriguingly, the genome analysis suggests a closer phylogenetic relationship with the chimpanzee adenoviruses (simian adenoviruses) rather than with other human adenoviruses, suggesting a recent origin of HAdV-4, and therefore species E, through a zoonotic event from chimpanzees to humans. Bioinformatics analysis also suggests a pre-zoonotic recombination event, as well, between species B-like and species C-like simian adenoviruses. These observations may have implications for the current interest in using chimpanzee adenoviruses in the development of vectors for human gene therapy and for DNA-based vaccines. Also, the reemergence, surveillance, and treatment of HAdV-4 as an ARD pathogen is an opportunity to demonstrate the use of genome determination as a tool for viral infectious disease characterization and epidemic outbreak surveillance: for example, rapid and accurate low-pass sequencing and analysis of the genome. In particular, this approach allows the rapid identification and development of unique probes for the differentiation of family, species, serotype, and strain (e.g., pathogen genome signatures) for monitoring epidemic outbreaks of ARD.  相似文献   

20.
The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals wiith huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号