首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Using QTL analysis and fine mapping, the novel recessive gene xa44(t) conferring resistance to BB was identified and the expression level of the gene was confirmed through qRT-PCR analysis.

Abstract

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major factor causing rice yield loss in most rice-cultivating countries, especially in Asia. The deployment of cultivars with resistance to BB is the most effective method to control the disease. However, the evolution of new Xoo or pathotypes altered by single-gene-dependent mutations often results in breakdown of resistance. Thus, efforts to identify novel R-genes with sustainable BB resistance are urgently needed. In this study, we identified three quantitative trait loci (QTLs) on chromosomes 1, 4, and 11, from an F2 population of 493 individuals derived from a cross between IR73571-3B-11-3-K3 and Ilpum using a 7K SNP chip. Of these QTLs, one major QTL, qBB_11, on chromosome 11 explained 61.58% of the total phenotypic variance in the population, with an LOD value of 113.59, based on SNPs 11964077 and 11985463. The single major R-gene, with recessive gene action, was designated xa44(t) and was narrowed down to a 120-kb segment flanked within 28.00 Mbp to 28.12 Mbp. Of nine ORFs present in the target region, two ORFs revealed significantly different expression levels of the candidate genes. These candidate genes (Os11g0690066 and Os11g0690466) are described as “serine/threonine protein kinase domain containing protein” and “hypothetical protein,” respectively. The results will be useful to further understand BB resistance mechanisms and provide new sources of resistance, together with DNA markers for MAS breeding to improve BB resistance in rice.
  相似文献   

2.
Liu Q  Yuan M  Zhou Y  Li X  Xiao J  Wang S 《Plant, cell & environment》2011,34(11):1958-1969
Approximately one third of the identified 34 rice major disease resistance (R) genes conferring race-specific resistance to different strains of Xanthomonas oryzae pv. oryzae (Xoo), which causes rice bacterial blight disease, are recessive genes. However, only two of the recessive resistance genes have been characterized thus far. Here we report the characterization of another recessive resistance gene, xa25, for Xoo resistance. The xa25, localized in the centromeric region of chromosome 12, mediates race-specific resistance to Xoo strain PXO339 at both seedling and adult stages by inhibiting Xoo growth. It encodes a protein of the MtN3/saliva family, which is prevalent in eukaryotes, including mammals. Transformation of the dominant Xa25 into a resistant rice line carrying the recessive xa25 abolished its resistance to PXO339. The encoding proteins of recessive xa25 and its dominant allele Xa25 have eight amino acid differences. The expression of dominant Xa25 but not recessive xa25 was rapidly induced by PXO339 but not other Xoo strain infections. The nature of xa25-encoding protein and its expression pattern in comparison with its susceptible allele in rice-Xoo interaction indicate that the mechanism of xa25-mediated resistance appears to be different from that conferred by most of the characterized R proteins.  相似文献   

3.
4.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, the most devastating bacterial disease of rice worldwide. The major disease resistance gene Xa3/Xa26 confers a durable resistance to Xoo with a dosage effect. However, the mechanism of Xa3/Xa26-mediated resistance remains to be elucidated. We created near-isogenic lines carrying Xa3/Xa26 with a background of indica and japonica, the two major subspecies of Asian cultivated rice. Analyzing these rice lines showed that the japonica background facilitated resistance to Xoo, which was associated with increased Xa3/Xa26 expression, compared with rice lines with an indica background. This characteristic of Xa3/Xa26 was related to the WRKY45 locus, which had higher expression with the japonica background than with the indica background. However, the two alleles of the WRKY45 locus had different expression levels, with the WRKY45-1 expression level being higher than that of WRKY45-2 for both japonica and indica backgrounds. In addition, the resistance level conferred by Xa3/Xa26 was higher in the presence of WRKY45-1 than in the presence of WRKY45-2 for both japonica and indica backgrounds. Xa3/Xa26-mediated resistance was associated with increased accumulation of jasmonic acid (JA), JA-isoleucine, and terpenoid and flavonoid phytoalexins. Exogenous JA application enhanced Xa3/Xa26-mediated resistance. These results not only provide more knowledge toward understanding the mechanism of Xa3/Xa26-mediated resistance but also offer the best choice for using Xa3/Xa26 for rice resistance improvement, specifically, a japonica background with the WRKY45-1 allele.  相似文献   

5.
Improved Samba Mahsuri (ISM) is a popular, high-yielding, bacterial blight resistant rice variety possessing medium-slender grain type. As ISM is highly susceptible to blast disease of rice, through the present study we have transferred two major blast resistance genes, Pi2 and Pi54 into the elite variety by marker-assisted backcross breeding. The two blast resistance genes were transferred to ISM through sets of backcrosses. In every backcross generation, PCR-based markers, specific for the blast resistance genes (Pi2 and Pi54) and bacterial blight resistance genes (Xa21, xa13 and xa5) were utilized for foreground selection, while a set of 144 parental polymorphic SSR markers were used for background selection and backcrossing was carried out until BC2 generation. A solitary BC2F1 plant possessing Pi2 or Pi54 along with Xa21, xa13 and xa5 and >?90% recovery of ISM genome was selected from the two sets of backcrosses were crossed and the intercross F1s (ICF1s) thus obtained were selfed to generate ICF2s. Homozygous ICF2 plants carrying all the five resistance genes were identified through markers and advanced through selfing till ICF5 generation by adopting pedigree method of selection. Three best lines at ICF5, possessing excellent resistance against bacterial blight and blast and closely resembling or superior to ISM in terms of grain quality: yield and agro-morphological traits have been identified and advanced for multi-location trials.  相似文献   

6.
Receptor-like cytoplasmic kinases (RLCKs) belong to a large subgroup of kinases that play pivotal roles in plant development and in protecting plants from various stresses. Here, we report the isolation and characterization of rice OsRLCK102, from the OsRLCK VII subgroup. Silencing of OsRLCK102 compromised receptor kinase XA21-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) but did not affect plant basal resistance to Xoo or Magnaporthe oryzae (M. oryzae). Plants with silenced OsRLCK102 exhibit architecture alterations, including reduced plant height, enlarged angle of the lamina joint, decreased rates of seed setting and enhanced sensitivity to hormone brassinolide (BR). Collectively, our study reveals that OsRLCK102 positively regulates XA21-mediated immunity and negatively regulates rice development through BR signaling in rice.  相似文献   

7.
8.
9.
Harpin proteins encoded by hrp genes are bacterial protein elicitors that can stimulate hypersensitive response (HR) in non-host plants. HR-related pathogen resistance involves a complex form of programmed cell death (PCD). It is increasingly viewed as a key component of the hypersensitive disease response of plants. Currently, the evidence of harpin proteins-induced PCD is deficient though it exhibits phenotypic parallels with HR, and the mechanism of harpin proteins-induced PCD is not well understood. In this study, we demonstrate that harpinXoo protein from Xanthomonas oryzae pv. oryzae of rice bacterial blight expressed and isolated from bacterial cells acted as an agent to induce PCD in infiltrated tobacco plants. Treatment of tobacco leaves with harpinXoo induced typical PCD-related morphological and biochemical changes including cell shrinkage and nuclear DNA degradation. We further analyzed the expression of several genes in signal transduction pathway of PCD in tobacco plants by real-time qRT-PCR analysis using EF- as an endogenous control. Our results showed that the expression of NtDAD1 was down-regulated and the expression of BI-1, tpa1 and aox1 was up-regulated following the infiltration of harpinXoo into tobacco leaves. Our data suggest that harpinXoo can induce PCD with the coordination of PCD-related genes in infiltrated tobacco leaves, providing evidence to further investigate the signal transduction pathways of HR and PCD.  相似文献   

10.
11.
12.
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.  相似文献   

13.
14.
15.

Key message

A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL.

Abstract

Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) mapping placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang?×?Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and Xicsx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.
  相似文献   

16.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines.  相似文献   

17.
Rice blast is a damaging disease caused by Magnaportheoryzae. Marker-assisted selection of blast resistance genes could help develop cultivars with blast resistance. Pigm is a broad-spectrum blast-resistant gene. However, few rice resources contain Pigm. In this study, the Pigm gene donor Gumei4 (GM4) was investigated. By analyzing different regions of Pigm sequences, we found that marker G8900 was a specific molecular marker of Pigm gene in GM4. Correlation analysis between molecular marker detection and identification of rice blast disease nursery revealed that G8900 could be used in marker-assisted selection (MAS) of Pigm. Furthermore, we introduced Pigm gene into the KT27S line (a blast-susceptible yellow-green-leaf-color mutant) in G8900-assisted breeding and identified three new yellow-green-leaf-color marker lines that are resistant to blast. The agronomic and economic traits of the three new lines are similar to those of their parental lines. The identification and application of Pigm-specific molecular marker in breeding of yellow-green-leaf-color marker line could play an important role in the production of disease-resistant hybrid rice.  相似文献   

18.

Key message

A quantitative trait locus  qRfg3 imparts recessive resistance to maize Gibberella stalk rot. qRfg3 has been mapped into a 350-kb interval and could reduce the disease severity index by ~26.6%.

Abstract

Gibberella stalk rot, caused by the fungal pathogen Fusarium graminearum, severely affects maize yield and grain quality worldwide. To identify more resistance quantitative trait loci (QTLs) against this disease, we analyzed a recombinant inbred line (RIL) population derived from a cross between resistant H127R and susceptible C7-2 inbred lines. Within this population, maize resistance to Gibberella stalk rot had high broad-sense heritability. A major QTL, qRfg3, on chromosome 3 was consistently detected across three field trials, accounting for 10.7–19.4% of the total phenotypic variation. Using a progeny-based sequential fine-mapping strategy, we narrowed qRfg3 down to an interval of ~350 kb. We further demonstrated that qRfg3 is a recessive resistance locus to Gibberella stalk rot that reduced the disease severity index by ~26.6%. Both the gene location and recessive genetic mode distinguish qRfg3 from other stalk rot resistance loci. Hence, qRfg3 is valuable as a complement to existing resistance QTLs to improve maize resistance to Gibberella stalk rot.
  相似文献   

19.
The Cf-9 gene in the tomato is known to confer resistance against leaf mold disease caused by Cladosporium fulvum, and a gene-based marker targeted to the Cf-9 allele has been widely used as a crop protection approach. However, we found this marker to be misleading in genotyping. Therefore, we developed new single-nucleotide polymorphism (SNP) and insertion and deletion (InDel) markers targeted to the Cf-9 allele in order to increase genotyping accuracy and facilitate high-throughput screening. The DNA sequences of reported Cf-9, cf-9, Cf-0, and closely related Cf-4 alleles were compared, and two functional and non-synonymous SNPs were found to distinguish the Cf-9 resistance allele from the cf-9, Cf-0, and Cf-4 alleles. An SNP marker including these two SNPs was developed and applied to the genotyping of 33 tomato cultivars by high-resolution melting analysis. Our SNP marker was able to select all three Cf-9 genotypes (resistant, heterozygous, and susceptible alleles). Interestingly, two cultivars were grouped separately from these three genotypes. To further examine this outgroup, we preformed polymerase chain reaction (PCR) on two InDel regions identified by sequence comparison of the Cf-9 and Cf-4 genes. The band patterns revealed that these two cultivars carried Cf-4 rather than Cf-9 alleles and that three cultivars classified in the Cf-9 resistance group actually carried both Cf-9 and Cf-4 genes. To determine whether these genotyping results were consistent with disease resistance phenotypes, we examined the induction of a hypersensitive response by transiently expressing the corresponding effector genes, and found that the results matched perfectly with the genotyping results. These findings indicate that the combination of our SNP and InDel markers allows resistant Cf-9 alleles to be distinguished from cf-9 and Cf-4 alleles, which will be useful for marker-assisted selection of tomato cultivars resistant to C. fulvum.  相似文献   

20.
Rice production and grain quality are severely affected by blast disease caused by the ascomycetous fungus Magnaporthe oryzae. Incorporation of genes that confer broad-spectrum resistance to blast has been a priority area in rice breeding programs. The blast resistance gene Pi9 sourced from Oryza minuta has shown broad spectrum and durable resistance to blast world-wide. In the present study co-dominant gene-based markers were developed for the precise marker-assisted tracking of Pi9 in breeding programs. The developed markers were validated across a diverse set of cultivars including basmati, indica and japonica varieties. Two markers, Pi9STS-1 and Pi9STS-2, effectively differentiated Pi9 donors from all the indicas and commercial basmati varieties tested. However, these markers were monomorphic between Pi-9 donors (IRBL9-W and Pusa 1637) and japonica type varieties. An additional gene-derived CAPS marker Pi91F_ 2R was developed to differentiate Pi9 donors from japonicas and traditional basmati lines. The co-dominant markers developed in the present study will be of immense utility to rice breeders for precise and speedy incorporation of Pi-9 into susceptible rice varieties through marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号