首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.  相似文献   

3.
4.
Goodarzi AA  Jeggo P  Lobrich M 《DNA Repair》2010,9(12):1273-1282
DNA non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the major DNA double strand break (DSB) pathways in mammalian cells, whilst ataxia telangiectasia mutated (ATM) lies at the core of the DSB signalling response. ATM signalling plays a major role in modifying chromatin structure in the vicinity of the DSB and increasing evidence suggests that this function influences the DSB rejoining process. DSBs have long been known to be repaired with two (or more) component kinetics. The majority (~85%) of DSBs are repaired with fast kinetics in a predominantly ATM-independent manner. In contrast, ~15% of radiation-induced DSBs are repaired with markedly slower kinetics via a process that requires ATM and those mediator proteins, such as MDC1 or 53BP1, that accumulate at ionising radiation induced foci (IRIF). DSBs repaired with slow kinetics predominantly localise to the periphery of genomic heterochromatin (HC). Indeed, there is mounting evidence that chromatin complexity and not damage complexity confers slow DSB repair kinetics. ATM's role in HC-DSB repair involves the direct phosphorylation of KAP-1, a key HC formation factor. KAP-1 phosphorylation (pKAP-1) arises in both a pan-nuclear and a focal manner after radiation and ATM-dependent pKAP-1 is essential for DSB repair within HC regions. Mediator proteins such as 53BP1, which are also essential for HC-DSB repair, are expendable for pan-nuclear pKAP-1 whilst being essential for pKAP-1 formation at IRIF. Data suggests that the essential function of the mediator proteins is to promote the retention of activated ATM at DSBs, concentrating the phosphorylation of KAP-1 at HC DSBs. DSBs arising in G2 phase are also repaired with fast and slow kinetics but, in contrast to G0/G1 where they all DSBs are repaired by NHEJ, the slow component of DSB repair in G2 phase represents an HR process involving the Artemis endonuclease. Results suggest that whilst NHEJ repairs the majority of DSBs in G2 phase, Artemis-dependent HR uniquely repairs HC DSBs. Collectively, these recent studies highlight not only how chromatin complexity influences the factors required for DSB repair but also the pathway choice.  相似文献   

5.
6.
7.
The RAD51 protein, a eukaryotic homologue of the Escherichia coli RecA protein, plays an important role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in mammalian cells. Recent findings suggest that HR may be important in repair following replication arrest in mammalian cells. Here, we have investigated the role of RAD51 in the repair of different types of damage induced during DNA replication with etoposide, hydroxyurea or thymidine. We show that etoposide induces DSBs at newly replicated DNA more frequently than gamma-rays, and that these DSBs are different from those induced by hydroxyurea. No DSB was found following treatment with thymidine. Although these compounds appear to induce different DNA lesions during DNA replication, we show that a cell line overexpressing RAD51 is resistant to all of them, indicating that RAD51 is involved in repair of a wide range of DNA lesions during DNA replication. We observe fewer etoposide-induced DSBs in RAD51-overexpressing cells and that HR repair of etoposide-induced DSBs is faster. Finally, we show that induced long-tract HR in the hprt gene is suppressed in RAD51-overexpressing cells, although global HR appears not to be suppressed. This suggests that overexpression of RAD51 prevents long-tract HR occurring during DNA replication. We discuss our results in light of recent models suggested for HR at stalled replication forks.  相似文献   

8.
DNA双链断裂(DSBs)是严重的DNA损伤形式之一,生物体对DSBs的修复可通过同源重组(HR)或非同源末端连接途径(NHEJ)进行。长期以来,人们普遍认为HR是细菌DSBs修复的惟一途径,但在分支杆菌和其它原核生物体内NHEJ途径的发现,使这一观念得以颠覆。最近的研究表明,细菌NHEJ修复系统是一个双组分系统,包含一个多功能的DNA连接酶(LigD)和DNA末端结合蛋白Ku,具有DSBs修复所需的断裂末段识别、末端加工和连接活性。重点综述细菌NHEJ修复系统的组成、结构以及生理功能。  相似文献   

9.
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.  相似文献   

10.
11.
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR. In contrast to this role for 53BP1 in HR in G2 phase, we show that it is dispensable for HR in S phase, where HC regions are likely relaxed during replication.  相似文献   

12.
Noel F. Lowndes 《DNA Repair》2010,9(10):1112-1116
In proliferating cells DNA double strand breaks (DSBs) are a common occurrence during DNA replication. DSB repair using homologous recombination is essential for the error-free repair of such breaks and proliferating cells require some level of HR activity for their viability. The BRCA1 tumour suppressor has an important role in this process and is believed to channel the DSBs into the HR pathway. The related 53BP1 gene is known to positively regulate repair of DSBs outside of S phase, but via the NHEJ pathway. Two new studies suggest a new role for 53BP1 as an inhibitor of HR [1], [2]. These genetic studies establish that 53BP1, but not other components of the NHEJ machinery, can inhibit the early resection step of HR. In cells defective for BRCA1, which is required for efficient HR, the balance between promoting and inhibiting HR is thrown towards inhibition. Simultaneous loss of 53BP1 can rescue the HR defect of BRCA1-defective cells and restore cellular viability. Here, I provide an overview of these studies and discuss their implications for tumourigenesis.  相似文献   

13.
Double-stranded DNA breaks (DSBs) are a particularly dangerous form of DNA damage because they can lead to chromosome loss, translocations or truncations. When DSBs occur, many proteins are recruited to the break site; these proteins serve to both initiate DNA repair and to activate a checkpoint response. Repair occurs via one of two pathways: non-homologous end-joining (NHEJ), in which broken DNA ends are directly ligated; or homologous recombination (HR), in which a homologous chromosome is used as a template in a replicative repair process. The checkpoint response is mediated by the phosphatidyl inositol 3-kinase-like kinases, Mec1 and Tel1 (ATR and ATM in humans, respectively). Two recent studies in yeast have significantly increased our understanding of when each of the proteins involved in these processes is localized to a break and, in addition, how their sequential localization is achieved. Specifically, these studies support and expand upon a model in which Tel1 and the NHEJ proteins are the first proteins to localize to the break to initiate signaling and attempt repair, but are subsequently replaced by Mec1 and the HR proteins. This transition is mediated by a cyclin-dependent kinase-dependent initiation of 5'-->3' processing (resection) of the DSB. Thus, the cell-cycle stage at which DSBs occur affects the way in which the DSBs are processed and recognized.  相似文献   

14.
Homologous recombination (HR) and non‐homologous end joining (NHEJ) represent distinct pathways for repairing DNA double‐strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ‐dependent process, which repairs a defined subset of radiation‐induced DSBs in G1‐phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB‐repair pathway whereas HR is only essential for repair of ~15% of X‐ or γ‐ray‐induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation‐induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP‐1, providing evidence that HR in G2 repairs heterochromatin‐associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single‐stranded DNA and Rad51 foci at radiation‐induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ.  相似文献   

15.
Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of heterochromatic DSBs by phosphorylating and inactivating the heterochromatin building factor KAP-1, leading to local chromatin relaxation. Here, we show that ATM accumulation and activity is strongly diminished at DSBs undergoing end-resection during HR. Such DSBs remain unrepaired in cells devoid of the HR factors BRCA2, XRCC3 or RAD51. Strikingly, depletion of KAP-1 or expression of phospho-mimic KAP-1 allows repair of resected DSBs in the absence of BRCA2, XRCC3 or RAD51 by an erroneous PARP-dependent alt-NHEJ process. We suggest that DSBs in heterochromatin elicit initial local heterochromatin relaxation which is reversed during HR due to the release of ATM from resection break ends. The restored heterochromatic structure facilitates HR and prevents usage of error-prone alternative processes.  相似文献   

16.
Re-initiation of DNA replication at origins within a given cell cycle would result in DNA rereplication, which can lead to genome instability and tumorigenesis. DNA rereplication can be induced by loss of licensing control at cellular replication origins, or by viral protein-driven multiple rounds of replication initiation at viral origins. DNA double-strand breaks (DSBs) are generated during rereplication, but the mechanisms of how these DSBs are repaired to maintain genome stability and cell viability are poorly understood in mammalian cells. We generated novel EGFP-based DSB repair substrates, which specifically monitor the repair of rereplication-associated DSBs. We demonstrated that homologous recombination (HR) is an important mechanism to repair rereplication-associated DSBs, and sister chromatids are used as templates for such HR-mediated DSB repair. Micro-homology-mediated non-homologous end joining (MMEJ) can also be used but to a lesser extent compared to HR, whereas Ku-dependent classical non-homologous end joining (C-NHEJ) has a minimal role to repair rereplication-associated DSBs. In addition, loss of HR activity leads to severe cell death when rereplication is induced. Therefore, our studies identify HR, the most conservative repair pathway, as the primary mechanism to repair DSBs upon rereplication.  相似文献   

17.
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.  相似文献   

18.
DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or mis-repaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2. Following S-phase-dependent genotoxins, HR events give rise to sister chromatid exchanges (SCEs), which can be detected cytogenetically in mitosis. Here, we describe that HR occurring in G2-irradiated cells also generates SCEs in ~50% of HR events. Since HR of IR-induced DSBs in G2 is a slow process, SCE formation in G2-irradiated cells requires several hours. During this time, irradiated S-phase cells can also reach mitosis, which has contributed to the widely held belief that SCEs form only during S phase. We describe procedures to measure SCEs exclusively in G2-irradiated cells and provide evidence that following IR cells do not need to progress through S phase in order to form SCEs.  相似文献   

19.
20.
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号