首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of various promoters in two-step carcinogenesis on the induction of histidine decarboxylase in the skin of mice was investigated. The potencies of various phorbol esters in inducing histidine decarboxylase activity were parallel with their tumor-promoting activities. Indole alkaloids such as dihydroteleocidin B and lyngbyatoxin A, which induced ornithine decarboxylase and promoted tumor development in the skin of mice with the same potency as 12-O-tetradecanoylphorbol-13-acetate (TPA), also induced histidine decarboxylase activity. These results suggest that histamine produced by this inducible histidine decarboxylase may play some role in tumor promotion.  相似文献   

2.
3.
Application of the tumor-promoting phorbol diester 12-O-tetradecanoylphorbol-13-acetate to mouse epidermis causes a large increase in the activity of ornithine decarboxylase and in polyamine accumulation. Concurrent application of fluocinolone acetonide, an anti-inflammatory steroid that dramatically inhibits tumor promotion, resulted in a dose-dependent decrease in the 12-O-tetradecanoylphorbol-13-acetate-stimulated ornithine decarboxylase activity and the subsequent rise in spermidine levels. Spermine and putrescine levels were not greatly affected by fluocinoline acetonide treatment except that maximal putrescine values occurred later in time. Doses of the glucocorticoid as low as 0.1 μg inhibited the 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity by as much as 50% and the rise in spermidine accumulation by 30% after coincident treatment of female Sencar mice.  相似文献   

4.
A simple method to culture explants of adult mouse skin in a modified Eagle's HeLa cell medium was developed in order to further study the biochemical responses to the tumor promoting phorbol esters. The skin explants remained viable for at least 48 hr, as determined by their ability to incorporate 3H-thymidine into DNA as well as to induce epidermal ornithine decarboxylase (EC 4.1.1.17) activity following 12-0-tetradecanoylphorbol-13-acetate addition. The time course of induction of ornithine decarboxylase activity by the tumor promoter was similar to that observed with intact mice. Furthermore, the addition of retinoic acid and indomethacin, the agents that are known to inhibit the induction of ornithine decarboxylase activity by topically applied TPA, also inhibited the induction of ornithine decarboxylase activity by TPA in skin explants.  相似文献   

5.
Diacylglycerols, such as 1,2-diolein, and tumor-promoting phorbol compounds, such as TPA (12-0-tetradecanoyl phorbol-13-acetate), stimulate the Ca2+/phospholipid-dependent protein kinase C from T51B rat liver cells, probably by sensitizing it to activation by Ca2+, and they reduce the liver cells' content of EDTA-extractable (i.e., soluble) protein kinase C activity. Evidence is presented that indicates that the glucocorticoid, dexamethasone, and the tumor-promoting artificial sweetener, saccharin, also trigger a Ca2+-dependent increase in the activity of the protein kinase C from T51B liver cells and reduce the cells' content of EDTA-extractable protein kinase C activity. However, these novel stimulators do not activate the enzyme by binding to the same site as diacylglycerols and TPA, although they do alter this site as indicated by an increase in the binding of the TPA analogue PDBu (phorbol 12,13-dibutyrate).  相似文献   

6.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.  相似文献   

7.
Induction of ornithine decarboxylase has been correlated with the onset of cellular proliferation and cAMP production. Whether the resulting increases in polyamine levels are essential mediators of growth and/or differentiation or are merely incidental remains controversial. We have used FRTL-5 thyroid cells in culture to study the effects of three growth factors on ornithine decarboxylase activity. These factors [TSH, bovine calf serum, and 12-O-tetradecanoylphorbol-13-acetate (TPA)] are thought to act through different intracellular pathways. TSH stimulates cAMP production in thyroid cells, calf serum acts through ill-defined pathways to stimulate growth, and TPA is known to activate protein kinase C. Bovine calf serum and TSH acted synergistically to induce ornithine decarboxylase activity. Activity was maximal when the phosphodiesterase inhibitor, methyl isobutyl xanthine, was included. Individually, neither serum nor TSH was a potent stimulator of the enzyme. Ornithine decarboxylase mRNA was apparent on Northern blots as a doublet following one hour of exposure to these agents. TPA did not stimulate ornithine decarboxylase activity and had an inhibitory effect on enzyme induction by TSH and serum. Difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, inhibited growth induced by both TPA and TSH in putrescine-free medium. This effect was not apparent in medium containing 10(-5) M putrescine. The data indicate that, although intracellular levels of cyclic AMP regulate ornithine decarboxylase activity, a component in serum is necessary for significant induction of this enzyme. Factors stimulating growth by non-cyclic AMP-dependent pathways may act without apparently stimulating this enzyme, although polyamines appear to be essential for their growth stimulatory effects.  相似文献   

8.
The mechanisms by which topically applied retinoic acid to mouse skin inhibits tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced epidermal ornithine decarboxylase activity were analyzed. Retinoic acid inhibition of the induction of epidermal ornithine decarboxylic activity was not the result of nonspecific cytotoxicity, production of a soluble inhibitor of ornithine decarboxylase, or direct effect on its activity. In addition, inhibition of TPA-caused increased ornithine decarboxylase activity does not appear to be due to enhanced degradation and/or post-translational modification of ornithine decarboxylase by transglutaminase-mediated putrescine incorporation. We found that retinoic acid inhibits the synthesis of ornithine decarboxylase caused by TPA. Application of 10 nmol TPA to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase activity which was paralled by increased [3H]difluoromethylornithine binding and an increased incorporation of [35S]methionine into the enzyme. Application of 17 nmol retinoic acid 1 h prior to application of 10 nmol TPA to skin resulted in inhibition of the induction of activity which accompanied inhibition of [3H]difluoromethylornithine binding and [35S]methionine incorporation into ornithine decarboxylase protein as determined by the tube-gel electrophoresis of the enzyme immunoprecipitated with monoclonal antibodies to it. Inhibition of ornithine decarboxylase synthesis was not the result of the inhibitory effect of retinoic acid on general protein synthesis. The results indicate that retinoic acid possibly inhibits TPA-caused synthesis of ornithine decarboxylase protein selectively.  相似文献   

9.
When guinea pig lymphocytes were cultured with 1-oleoyl-2-acetyl-glycerol (OAG), A23187, and cholera toxin, ornithine decarboxylase activity was induced synergistically, peaking at 6 h. Addition of 12-O-tetradecanoyl-phorbol 13-acetate (TPA), A23187, and dibutyryl cAMP caused the same kind of induction. Cholera toxin potentiated the ability of A23187 to induce ornithine decarboxylase, but not that of OAG. Dibutyryl cAMP augmented the induction caused by A23187 but not by TPA. These results suggest that both the activation of Ca++-sensitive, phospholipid-dependent protein kinase (protein kinase C) and the increase in intracellular levels of Ca++ and cAMP are necessary for this induction. cAMP may potentiate the induction by modulating a Ca++ messenger system other than that for protein kinase C activation.  相似文献   

10.
Staurosporine, a most potent protein kinase C inhibitor, actually inhibited protein kinase C activity obtained either from cytosol or particulate fraction of mouse epidermis. Staurosporine at the concentrations which exert protein kinase C inhibition, however, failed to inhibit, but markedly augmented 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused ornithine decarboxylase (ODC) induction in isolated mouse epidermal cells. Staurosporine by itself induced ODC activity as TPA does. Mechanism of ODC induction seems different between these two compounds. Another protein kinase C inhibitor, H-7, inhibited both staurosporine- and TPA-caused ODC induction.  相似文献   

11.
12.
12-O-Tetradecanoylphorbol-13-acetate (TPA), a skin tumor-promoting phorbol ester, and teleocidin and aplysiatoxin, which are potent tumor promoters in mouse skin but are chemically unrelated to phorbol esters, induced change of cultured rabbit costal chondrocytes from a polygonal to a fibroblastic shape and inhibited glycosaminoglycan (GAG) synthesis and metachromatic matrix formation in these cells. The potencies of teleocidin and aplysiatoxin to inhibit GAG synthesis were almost the same as that of TPA. On the other hand, Tween 60 and cantharidin, weak mouse skin tumor promoters, phenobarbital, a liver tumor promoter, and saccharin, a bladder tumor promoter, had no effect on the morphology or GAG synthesis of cultured chondrocytes. Like TPA, teleocidin and aplysiatoxin increased DNA and RNA syntheses of chondrocytes. Parathyroid hormone (PTH) and dibutyryl cyclic AMP reversed the morphological and histochemical changes caused by a 4-day treatment with teleocidin or aplysiatoxin as well as with TPA, reversal being apparent after 2 days. PTH increased intracellular cyclic AMP after 2 min in chondrocytes pretreated with teleocidin or aplysiatoxin as well as with TPA. PTH also increased ornithine decarboxylase [ODC; EC 4.1.1.17] activity in these chondrocytes after 4 h. These results show that retention of responsiveness to PTH is a typical characteristic of chondrocytes dedifferentiated by treatment with TPA-type tumor promoters such as TPA, teleocidin and aplysiatoxin. The results also suggest that ODC induction mediated by elevation of cyclic AMP plays an important role in re-differentiation of teleocidin- and aplysiatoxin-treated chondrocytes.  相似文献   

13.
1-Oleoyl-2-acetyl-glycerol induced a rise in ornithine decarboxylase activity in isolated epidermal cells in a concentration-dependent manner. The time course of the induction of ornithine decarboxylase by 1-oleoyl-2-acetyl-glycerol was similar to that by 12-O-tetradecanoylphorbol-13-acetate. A23187 did not enhance the enzyme induction caused by 1-oleoyl-2-acetyl-glycerol. Palmitoyl-DL-carnitine prevented the induction of the enzyme either by 1-oleoyl-2-acetyl-glycerol or 12-O-tetradecanoyl-phorbol-13-acetate. These results suggest that the activation of protein kinase C is an initial and essential event in the process of ornithine decarboxylase induction caused by 12-O-tetradecanoyl-phorbol-13-acetate.  相似文献   

14.
12-O-tetradecanoylphorbol-13-acetate (TPA) caused a rapid activation of protein kinase C in a murine (HEL-30) and in a human (NCTC) epidermal cell line. In HEL-30 cells, protein kinase C activation is followed by ornithine decarboxylase stimulation and cell proliferation, events inhibited by H-7, a specific inhibitor of protein kinase C. TPA in NCTC cells inhibited the basal ornithine decarboxylase activity and cell growth, whereas H-7 did not modify TPA effect. The response of NCTC cells was not due to direct toxicity of TPA. These data confirm that in murine epidermal cells, the proliferation induced by TPA is mediated by protein kinase C, whereas in a human skin-derived cell line these events are not or inversely associated.  相似文献   

15.
Phorbol ester tumor promoters and growth factors rapidly stimulate ornithine decarboxylase activity in the transformed hamster fibroblast line HE68BP. We report here a close correspondence between the time courses and magnitudes of induction of ornithine decarboxylase activity and immunoreactive ornithine decarboxylase protein following treatment of HE68BP cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) and/or refeeding with fresh medium. Cycloheximide addition to induced cells caused a rapid fall in the levels of both ornithine decarboxylase activity and ornithine decarboxylase protein. Northern blot analysis of RNA isolated from HE68BP cells indicated that treatment with TPA and fresh medium increased the amount of two species of mRNA of lengths 2.4 and 2.1 kilobase. This increased accumulation of ornithine decarboxylase mRNA corresponded temporally to that observed at the protein level, with a 15-fold maximal induction 7 h after treatment followed by a rapid decline in hybridizable RNA. These data indicate that stimulation of ornithine decarboxylase activity by TPA or refeeding involves changes in levels of ornithine decarboxylase mRNA as well as changes in the rate of synthesis of ornithine decarboxylase protein.  相似文献   

16.
12-O-tetradecanoyl-phorbol-13-acetate (TPA) induced ornithine decarboxylase (ODC, EC 4.1.1.17) in normal, preneoplastic and malignant rat brain cells in culture, but treatment with phorbol, acetate or medium shift resulted in a similar response. Medium shift induced ODC activity in C3H/10T1/2 CL8 cells 4 and 12 hr after treatment. TPA induced only the 12 hr peak. ODC induction in C3H/10T1/2 CL8 cells was completely inhibited by cycloheximide and actinomycin D. Addition of alpha-amanitin abolished the 12 hr peak, but the TPA induced ODC activity was only partly inhibited. ODC induction by TPA was lower in C3H/10T1/2 CL8 cells initiated with 3-methyl-cholanthrene (MCA). ODC increased with TPA up to 10(-7) M and decreased at higher concentrations of TPA.  相似文献   

17.
The possible role of protein kinase C in avian granulosa cell steroidogenesis was studied in vitro by examining the effect of tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on progesterone synthesis in chicken granulosa cells in short-term (3h) incubations. TPA (1-100 nM) caused a marginal but nonsignificant increase in progesterone production in granulosa cells isolated from the largest preovulatory follicle. When incubated in combination with luteinizing hormone (5-100 ng/mL), TPA suppressed the stimulatory effects of submaximally and maximally effective doses of the gonadotropin in a concentration-related manner. Similarly, the phorbol ester inhibited the steroidogenic responses to forskolin and dibutyryl cyclic AMP. By comparison, TPA had no appreciable effect on the metabolism of exogenous pregnenolone substrate to progesterone. Our data indicate that the tumor-promoting phorbol ester influences steroidogenic steps distal to cyclic AMP generation but at or before pregnenolone formation, and that protein kinase C may be a negative regulator of steroid biosynthesis in chicken granulosa cells.  相似文献   

18.
19.
Effect of tumor promoters including phorbol esters and teleocidin on 1-methyladenine (1-MeAde)-induced oocyte maturation was studied in the starfish. When isolated immature oocytes were treated with 1-MeAde and 12-O-tetradecanoylphorbol-13-acetate (TPA), 1-MeAde-induced maturation was completely inhibited at more than 2.5 μg/ml. However, if TPA was added after the hormone-dependent period (the minimum period wherein 1-MeAde is required), such maturation-inhibiting effect was no longer observed. Pretreatment with TPA for 5 min showed that its inhibitory action is irreversible. However, when TPA-injected oocytes were treated with 1-MeAde, all oocytes underwent germinal vesicle breakdown (GVBD). GVBD was induced in TPA-treated oocytes upon injection of the cytoplasm of maturing oocytes containing maturation-promoting factor (MPF). These facts show that TPA acts on the oocyte surface to inhibit the production of MPF. Retinoids including retinal, retinol and retinoic acid reversed the inhibitory effect of TPA on 1-MeAde-induced maturation. Experiments with various phorbol esters showed a good correlation between their maturation-inhibiting activity and their known tumor-promoting activity. Further, telecoidin, which is structurally unrelated to phorbol esters, inhibited 1-MeAde action. Since both tumor-promoting phorbol esters and teleocidin are known to activate Ca2+ -activated, phospholipid-dependent protein kinase (protein kinase C) and their activation effect is inhibited by retinoids, it appears that the activation of protein kinase C by tumor promoters is involved in blocking of 1-MeAde action.  相似文献   

20.
The major interaction site for tumor-promoting phorbol esters is the calcium-activated, phospholipid-dependent protein kinase (protein kinase C), a key-element in signal transduction. Binding of phorbol esters results in enzyme activation which mediates, at least in part, the action of these agents. We have investigated the effects of tumor promoter chloroform on protein kinase C activity. Like thrombin and 12-O-tetradecanoylphorbol-13-acetate (TPA), chloroform was able to activate protein kinase C in intact rabbit platelets. In addition, chloroform stimulated enzyme activity as well as TPA binding capacity in cell-free system. Scatchard analysis of the data has shown that chloroform increased the number of phorbol ester binding sites. Structurally related compounds, carbon tetrachloride and methylene chloride, activated the enzyme similarly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号