首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Microbial precipitation of gold was achieved using Escherichia coli and Desulfovibrio desulfuricans provided with H2 as the electron donor. No precipitation was observed using H2 alone or with heat-killed cells. Reduction of aqueous AuIII ions by both strains was demonstrated at pH 7 using 2 mM HAuCl4 solution and the concept was successfully applied to recover 100% of the gold from acidic leachate (115 ppm of AuIII) obtained from jewelry waste. Bioreductive recovery of gold from aqueous solution was achieved within 2 h, giving crystalline Au0 particles (20-50 nm), in the periplasmic space and on the cell surface, and small intracellular nanoparticles. The nanoparticle size was smaller (red suspension) at acidic pH (2.0) as compared to that obtained at pH 6.0 and 7.0 (purple) and 9.0 (dark blue). Comparable nanoparticles were obtained from AuIII test solutions and jewelry leachate.  相似文献   

2.
A Rhodobacter sphaeroides-supported dried, ground palladium catalyst ("Rs-Pd(0)") was compared with a Desulfovibrio desulfuricans-supported catalyst ("Dd-Pd(0)") and with unsupported palladium metal particles made by reduction under H2 ("Chem-Pd(0)"). Cell surface-located clusters of Pd(0) nanoparticles were detected on both D. desulfuricans and R. sphaeroides but the size and location of deposits differed among comparably loaded preparations. These differences may underlie the observation of different activities of Dd-Pd(0) and Rs-Pd(0) when compared with respect to their ability to promote hydrogen release from hypophosphite and to catalyze chloride release from chlorinated aromatic compounds. Dd-Pd(0) was more effective in the reductive dehalogenation of polychlorinated biphenyls (PCBs), whereas Rs-Pd(0) was more effective in the initial dehalogenation of pentachlorophenol (PCP) although the rate of chloride release from PCP was comparable with both preparations after 2 h.  相似文献   

3.
Abstract: The sulfate-reducing bacterium Desulfovibrio desulfuricans strain CSN (DSM 104) oxidized H2 with thiosulfate, sulfate, sulfite, nitrite, nitrate and oxygen with rates increasing (in the order listed) from 20 to 525 nmol H2 min−1 mg−1 protein. Nitrate reduction was induced by nitrate or limiting concentrations of sulfate during growth, while all other activities were constitutive. Oxygen prevented reduction of all other electron acceptors, while nitrate and nitrite blocked the reduction of the sulfur compounds. In the presence of H2 and reduced sulfur compounds, H2 was the preferred electron donor. The cells oxidized thiosulfate or sulfite coupled to the reduction of nitrate to ammonia. This represents a novel type of metabolism connecting the sulfur and nitrogen cycles. It is concluded that oxygen is the preferred electron acceptor of D. desulfuricans . Sulfate reduction in oxic environments must be due to different organisms or mechanisms.  相似文献   

4.
It is shown that the genome of the sulfate-reducing bacterium Desulfovibrio desulfuricans 1388 contains a superoxide dismutase (SOD) gene (sod). The gene encodes an export signal peptide characteristic for periplasmic redox proteins. The amino acid sequence showed high homology with iron-containing SODs from other bacteria. Electrophoretically pure SOD was isolated from the periplasmic fraction of bacterial cells by FPLC chromatography. Like other Fe-SODs, D. desulfuricans 1388 superoxide dismutase is inhibited by H2O2 and azide, but not by cyanide.  相似文献   

5.
A novel catalytic activity of palladium [Pd(0)]-coated cells of Desulfovibrio desulfuricans ATCC 29577 ["bio-Pd(0)"] is demonstrated. Reduction of 700 microM Cr(VI) occurred within 24 h using formate (25 mM) or hydrogen (1 atm) as the electron donor, under conditions whereby cells lacking bound Pd(0), or palladium metal manufactured via chemical reduction of soluble Pd(II), did not reduce Cr(VI). The biomass-bound Pd(0) also functioned in the continuous removal of 400 microM Cr(VI) from a 1 mM solution under H(2) (flow residence time approximately 5 h), where chemically prepared Pd(0) was ineffective. This demonstrates a new type of active bioinorganic catalysis, whereby the presence of biomass bound to Pd(0) confers a novel catalytic capability not seen with Pd base metal or biomass alone.  相似文献   

6.
The effects of sulfate and nitrogen concentrations of the rate and stoichiometry of microbial sulfate reduction were investigated for Desulfovibrio desulfuricans grown on lactate and sulfate in a chemostat at pH 7.0. Maximum specific growth rates (mu(max)), half-saturation coefficients (K(sul)), and cell yield (Y(c/Lac)) of 0.344 +/- 0.007 and 0.352 +/- 0.003 h (-1), 1.8 +/- 0.3 and 1.0 +/- 0.2 mg/L, and 0.020 +/- 0.003 and 0.017 +/- 0.003 g cell/g lactate, respectively, were obtained under sulfate-limiting conditions at 35 degrees C and 43 degrees C. Maintenance energy requirements for D. desulfuricans were significant under sulfate-limiting conditions. The extent of extracellular polymeric substance (EPS) produced was related to the carbon: nitrogen ratio in the medium. EPS production rate increased with decreased nitrogen loading rate. Nitrogen starvation also resulted in decreased cell size of D. desulfuricans. The limiting C : N ratio (w/w) for D. desulfuricans was in the range of 45 : 1 to 120 : 1. Effects of sulfide on microbial sulfate reduction, cell size, and biomass production were also ivestigated at pH 7.0. Fifty percent inhibition of lactate utilization occurred at a total sulfide concentration of approximately 500 mg/L. The cell size of D. desulfuricans decreased with increasing total sulfide concentration. Sulfide inhibition of D. desulfuricans was observed to be a reversible process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
Hexavalent chromium, a carcinogen and mutagen, can be reduced to Cr(III) by Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. This study examined Cr(VI) reduction by immobilized cells of the two strains in a common solution matrix using various entrapment matrices. Chitosan and PVA-borate beads did not retain integrity and supported low or no reduction of Cr(VI) by the cells. A commercial preparation (Lentikats) was stable but also did not support Cr(VI) reduction. K-carrageenan beads were stable in batch suspensions but gel integrity was lost after only 5 h in a flow-through system in the presence of 100 microM Cr(VI). The best immobilization matrices were agar and agarose, where the initial rates of reduction of Cr(VI) (from 500 microM solution) for D. vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776 were 127 (agar) and 130 (agarose), and 15 (agar) and 12 (agarose) nmol h(-1) mg dry cell wt(-1), respectively. The higher removal of Cr(VI) by D. vulgaris was also seen in 14-mL packed-bed flow-through columns, where, at a flow rate of 2.4 mL h(-1), the percentage removal of Cr(VI) was approximately 95% and 60% for D. vulgaris and Microbacterium sp., respectively (agar-immobilized cells). The Cr(VI) reducing activities of D. vulgaris and Microbacterium sp. were lost after 159 and 140 h, respectively. Examination of the beads for structural integrity within the columns in situ using magnetic resonance imaging after 24 and 100 h of continuous operation against Cr(VI) (with negligible Cr retained within the columns) showed that agar beads were more stable with time. The most appropriate system for development of a continuous bioprocess is thus the use of D. vulgaris NCIMB 8303 immobilized in an agar gel matrix.  相似文献   

8.
Fifteen (soil and intestinal) strains of Desulfovibrio desulfuricans species were typed by PCR method with the use of primers specific for repetitive extragenic palindromic (REP) and enterobacterial repetitive intergenic consensus (ERIC) sequences. As a result, characteristic DNA fingerprints for the strains were obtained. Moreover, the genetic profiles were found to be useful for typing and distinguishing the strains of D. desulfuricans. According to cluster analysis, PCR with primers complementary to the sequences REP appeared to be slightly more discriminatory than PCR with ERIC primers for the investigated strains. Distinct fingerprint patterns of two isolates derived from the same patient pointed to the different origin of both strains.  相似文献   

9.
The present study addresses the effects of oxygen exposure on the aerobic and anaerobic respiratory activity of Desulfovibrio desulfuricans strain DvO1. This strain was isolated from the highest sulfate-reduction positive most-probable-number dilution (10(6)) of an activated sludge sample, which had been subjected to 120 h of continuous aeration. Washed cell suspensions of strain DvO1 were aerated at 50% atmospheric oxygen saturation in sulfide-free media for a period of 33 h in the presence or absence of an external electron donor (10 mM lactate). During the aeration periods, samples were removed at intervals for determination of anaerobic INT [2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride]-reducing activity, anaerobic sulfate-reducing activity, and oxygen-reducing activity. The cell suspension aerated in the absence of lactate showed negligible endogenous oxygen reduction rates and therefore did not consume oxygen during the aeration period. In contrast, the cell suspension aerated in the presence of lactate sustained significant rates of oxygen reduction during the entire 33 h aeration period. Despite this, no explicit differences in the potential INT-, oxygen-, or sulfate-reducing activities were evident between the two cell suspensions during the aeration periods. Strain DvO1 remained viable throughout the 33 h aeration periods irrespective of the presence or absence of lactate, however, the oxygen exposure resulted in a dose-dependent reversible metabolic inactivation. Notably, lactate-dependent anaerobic sulfate-reducing activity recovered quickly upon anaerobiosis, and was more oxygen tolerant than lactate-dependent oxygen-reducing activity.  相似文献   

10.
Desulfovibrio desulfuricans reduces Pd(II) to Pd(0) at the expense of H2. Mass transfer limits the rate under hydrogen in a static solution, while a bubble reactor was inefficient due to loss of H2. A novel approach to the transfer of H2 to the biomass utilized a biofilm on the surface of a Pd-Ag membrane that traps and transports atomic hydrogen (H), formed at the back-side electrochemically, for delivery to the immobilized biofilm to form a biocatalytic surface for reduction of Pd(II) and deposition of Pd(0). Separation of the primary electrolysis chamber from the biocatalytic chamber permits the use of different solutions and pH in each, and use of a low voltage for H2 generation. Pd(0) recovery was efficient and fed by H2 on demand to give a clean, economic system with no generation of secondary wastes. The system was tested against a precious metal processing waste where the continuous removal of Pd, Pt and Rh was up to 88%, 99% and 75%, respectively, at a flow residence time of 10–20 min at an input pH of 2.5 and a total metals concentration of approx. 5 mM. Biorecovered Pd(0) was a better chemical catalyst than its chemical counterpart in a test reaction which liberated H2 from hypophosphite.  相似文献   

11.
The effects of temperature and phosphorous concentration on the rate and the extent of microbial sulfate reduction with lactate as carbon and energy source were investigated for Desulfovibrio desulfuricans. The continuous culture experiments (chemostat) were conducted at pH 7.0 from 12 to 48 degrees C. The maximum specific growth rate (mu(max)) was relatively constant in the range 25 degrees C-43 degrees C and dramatically decreased outside this temperature range. The half-saturation coefficient was minimum at 25 degrees C. Cell yield was highest in the optimum temperature range (35 degrees C-43 degrees C) for growth. Maintenance energy requirements for D. desulfuricans were not significant. Two moles of lactate is consumed for every mole of sulfate reduced, and this stoichiometric ratio is not temperature dependent. Steady state rate and stoichiometric coefficients accurately predicted transient behavior during temperature shifts. The extent of extracellular polymeric substance (EPS) is related to the concentration of phosphorous in the medium. EPS production rate increased with decreased phosphorous loading rate. Failure to discriminate between cell and EPS formation by D. desulfuricans leads to significant overestimates of the cell yield. The limiting C:P ratio for D. desulfuricans was in the range of 400:1 to 800:1.  相似文献   

12.
Biomass of Desulfovibrio desulfuricans was used to recover Au(III) as Au(0) from test solutions and from waste electronic scrap leachate. Au(0) was precipitated extracellularly by a different mechanism from the biodeposition of Pd(0). The presence of Cu2+ (∼2000 mg/l) in the leachate inhibited the hydrogenase-mediated removal of Pd(II) but pre-palladisation of the cells in the absence of added Cu2+ facilitated removal of Pd(II) from the leachate and more than 95% of the Pd(II) was removed autocatalytically from a test solution supplemented with Cu(II) and Pd(II). Metal recovery was demonstrated in a gas-lift electrobioreactor with electrochemically generated hydrogen, followed by precipitation of recovered metal under gravity. A 3-stage bioseparation process for the recovery of Au(III), Pd(II) and Cu(II) is proposed.Victoria S. Baxter-Plant – Deceased  相似文献   

13.
Uptake of 35S-labelled sulfate was studied with a new isolate of Desulfovibrio desulfuricans, strain CSN. Micromolar additions of sulfate (1–10 M or nmol/mg protein) to cell suspensions incubated in 150 mM KCl at-1°C were almost completely taken up and accumulated about 5,000-fold. Accumulation was not influenced by incubation in NaCl instead of KCl, by acidic pH (5.5) or by incubation under air for 10 min. In alkaline milieu (pH 8.5), after prolonged contact with air (2 h), or after growth with excess sulfate or thiosulfate as electron acceptor, the amount taken up was diminished approximately by half. Pasteurization inhibited sulfate uptake completely. With increasing concentrations of added sulfate (0.1 to 2.5 mM) the intracellular concentration increased only slowly up to 25 mM, and the accumulation factor decreased down to 8. Sulfate transport was reversible. Accumulated sulfate was rapidly lost from the cells after addition of excess non-labelled sulfate or after addition of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The ATPase inhibitor dicyclohexylcarbodiimide (DCCD) specifically inhibited sulfate reduction but had no immediate influence on sulfate accumulation. Addition of the phosphate analogue arsenate (5 mM) was without effect. These results were not in favour of an ATP-dependent transport system. The K+-H+-antiporter nigericin (in 150 mM KCl) and the Na+-H+-antiporter monensin (in 150 mM NaCl) caused partial inhibition of sulfate accumulation, whereas the K+-transporter valinomycin (in 150 mM KCl) and the Na+-H+ exchange inhibitor amiloride (2 mM) were without effect. The permeant thiocyanate anion (150 mM) inhibited sulfate uptake by 60% at pH 7, and completely at pH 8.5. Although the effects of the different ionophores on the chemiosmotic gradients have not been studied so far, the results indicated that probably both, pH and drive sulfate accumulation and that sulfate is taken up electrogenically in symport with more than 2 protons. The structural sulfate analogues tungstate and molybdate (0.1 mM, each) did not affect sulfate accumulation, although molybdate inhibited sulfate reduction. Chromate completely blocked both of these activities. Sulfite and selenite caused little or no decrease of sulfate accumulation, whereas with thiosulfate and selenate significant inhibition was observed.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide  相似文献   

14.
The potential for upgrading the microbiological reduction of sulfates and for decreasing the organic pollution levels in industrial waste-water by the adjustment of the COD/SO4 ratio was investigated. The experiments involved waste-water samples coming from industrial pig farming, baker's yeast production and organic dye manufacture. The results show that in the presence of Desulfovibrio desulfuricans both the objectives can be achieved by abating the disproportion between the content of sulfates and that of organic substances.  相似文献   

15.
Conjugational transfer of several IncQ plasmids from Escherichia coli to the strictly anaerobic, sulfate-reducing bacterium Desulfovibrio desulfuricans strain G100A was demonstrated. Plasmid DNA from exconjugants was visualized on agarose gels and was used to transform E. coli to the appropriate antibiotic resistances. Neither transfer of IncW and IncP plasmids to strain G100A, nor transfer of any plasmid to D. desulfuricans strain ATCC 27774 was observed. Conjugation of suicide plasmids containing either Tn5 or Tn9 into D. desulfuricans did not result in detectable transposition. Optimal conditions for conjugational transfer and antibiotic resistance levels of strain G100A were examined.  相似文献   

16.
pH changes and sulfide production upon addition of sulfate, sulfite or thiosulfate to non-buffered H2-saturated cell suspensions of Desulfovibrio desulfuricans were studied by means of electrodes. The addition of these electron acceptors resulted in a rapid alkalinization of the suspension which was accompanied by sulfide production. At-2° C, alkalinization without immediate sulfide production could be obtained. After addition of 35S-labelled sulfate at-2° C, the label was found to be concentrated 7,500-fold in the cells, while 2 protons per sulfate molecule had disappeared from the outer bulk phase. Alkalinization and sulfide production from micromolar electron acceptor additions depended on the transmembraneous proton gradient ( pH), and were reversibly inhibited in alkaline solution (pH>8.0) or by the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP). Protonophore-inhibited sulfide production from sulfite or thiosulfate could be restored if the cell membranes were permeabilized by the detergent cetyltrimethylammonium bromide (CTAB), or if downhill transport was made possible by the addition of electron acceptors at millimolar concentrations. Sulfate was not reduced under these conditions, presumably because the cells did not contain ATP for its activation. K+-and Na+-ionophores such as nigericin, valinomycin or monensin appeared to be of limited efficiency in D. desulfuricans. In most experiments, sulfate reduction was inhibited by the K+–H+ antiporter nigericin in the presence of K+, but not by the thiocyanate anion or the K+-transporter valinomycin. The results indicate that sulfate, sulfite and thiosulfate are taken up by proton-anion symport, presumably as undissociated acids with an electroneutral mechanism, driven by the transmembraneous pH gradient ( pH) or by a solute gradient. Kinetics of alkalinization and sulfide production in cells grown with different electron acceptors revealed that D. desulfuricans has different specific uptake systems for sulfate and thiosulfate, and obviously also for sulfite. It is proposed that the electron acceptor transport finally will not consume net energy during growth in buffered medium: The protons taken up during active electron acceptor transport leave the cell with the reduced end-product by simple passive diffusion of H2S.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - FCCP carbonyl cyanide p-trifluoromethoxy phenylhydrazone - CTAB cethyltrimethylammonium bromide  相似文献   

17.
Deenergized cells of Desulfovibrio desulfuricans strain Essex 6 formed trithionate and thiosulfate during reduction of sulfite with H2 or formate. The required conditions were pretreatment with the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP), low concentration of the electron donor H2 or formate (25–200 M) and the presence of sulfite in excess (>250 M). The cells formed up to 20 M thiosulfate, and variable amounts of trithionate (0–9 M) and sulfide (0–62 M). Tetrathionate was not produced. Sulfate could not replace sulfite in these experiments, as deenergized cells cannot activate sulfate. However, up to 5 M thiosulfate was produced by cells growing with H2 and excess sulfate in a chemostat. Micromolar concentrations of trithionate were incompletely reduced to thiosulfate and sulfide by washed cells in the presence of CCCP. Millimolar trithionate concentrations blocked the formation of sulfide, even in the absence of CCCP, and caused thiosulfate accumulation; sulfide formation from sulfate, sulfite or thiosulfate was stopped, too. Trithionate reduction with H2 in the presence of thiocyanate was coupled to respiration-driven proton translocation (extrapolated H+/H2 ratios of 1.5±0.6). Up to 150 M trithionate was formed by washed cells during oxidation of sulfite plus thiosulfate with ferricyanide as electron acceptor (reversed trithionate reductase activity). Cell breakage resulted in drastic decrease of sulfide formation. Cell-free extract reduced sulfite incompletely to trithionate, thiosulfate, and sulfide. Thiosulfate was reduced stoichiometrically to sulfite and sulfide (thiosulfate reductase activity). The formation of sulfide from sulfite, thiosulfate or trithionate by cell-free extract was blocked by methyl viologen, leading to increased production of thiosulfate plus trithionate from sulfite, or increased thiosulfate formation from trithionate. Our study demonstrates for the first time the formation of intermediates during sulfite reduction with whole cells of a sulfate-reducing bacterium oxidizing physiological electron donors. All results are in accordance with the trithionate pathway of sulfite reduction.With gratitude dedicated to Prof. Dr. Norbert Pfennig on occasion of his 65th birthday  相似文献   

18.
Proton translocation by washed cells of the sulfate-reducing bacterium Desulfovibrio desulfuricans strain Essex 6 was studied by means of pH and sulfide electrodes. Reversible extrusion of protons could be induced either by addition of electron acceptors to cells incubated under hydrogen, or by addition of hydrogen to cells incubated in the presence of an appropriate electron acceptor. Proton translocation was increased in the presence of ionophores that dissipate the membrane potential (thiocyanate, methyl triphenylphosphonium cation, but not valinomycin) and was sensitive to the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). Upon micromolar additions of H2, usually sulfide was formed in stoichiometric amounts, and extrapolated H+/H2 ratios were 1.8±0.5 with sulfate, 2.3±0.3 with sulfite and 0.5±0.1 with thiosulfate. In several experiments hydrogen pulses caused increased proton extrusion not associated with sulfide production. This was a hint that sulfite might be reduced via intermediates. In the absence of H2S formation, extrapolated H+/H2 ratios were 3.1±0.8 with sulfate, 3.4±1.1 with sulfite, 4.4±0.8 with thiosulfate and 6.3±1.2 with oxygen. Micromolar pulses of electron acceptors to cells incubated under H2 caused less proton translocation than H2 pulses in presence of excess of electron acceptor; extrapolated H+/H2 ratios were 1.3±0.4 with sulfite, 3.3±0.9 with nitrite and 4.2±0.5 with oxygen. No proton translocation was observed after micromolar pulses of sulfate, thiosulfate or nitrate to cells incubated under hydrogen in the presence of thiocyanate. Inhibition experiments with CO and CuCl2 revealed that the hydrogenase activity was localized in the intracellular space, and that no periplasmic hydrogenase was present. The results indicate that D. desulfuricans can generate a proton gradient by pumping protons across the cytoplasmic membrane.Abbreviations APS adenosine 5-phosphosulfate - CCCP carbonyl cyanide m-chlorophenylhydrazone - MTTP+ methyl triphenylphosphonium cation  相似文献   

19.
Sulfur isotope fractionation during reduction of thiosulfate was investigated with growing batch cultures of Desulfovibrio desulfuricans CSN (DSM 9104) at 30 °C. The sulfide produced was depleted in 34S by 10‰ as compared to total thiosulfate sulfur. The depletion was equal to that during sulfate reduction under similar conditions. The two sulfur atoms of the thiosulfate molecule were affected differently by fractionation. Sulfide produced from sulfonate sulfur was depleted by 15.4‰, sulfide produced from sulfane sulfur by 5.0‰. Received: 29 October 1997 / Accepted: 18 December 1997  相似文献   

20.
Growth of Desulfovibrio gigas NCIMB 9332 in mineral, vitamin-supplemented media with ethanol as substrate was strongly stimulated by the addition of tungstate (optimal level approximately 10-7 M). At suboptimal tungstate concentrations, up to 1.0 mM acetaldehyde was detected in the culture supernatant and growth was slow. Omission of both tungstate and molybdate from the media prevented growth and ethanol utilization. Tungstate-deprived cultures that were grown on lactate had much lower aldehyde dehydrogenase (benzylviologen as acceptor; BV-AIDH) levels than tungstate-supplemented cultures. These data suggest that tungstate is required for the synthesis of active BV-AIDH. The characteristics of the enzyme activities in cell-free extracts show that the BV-AIDH activity present in tungstate-supplemented cultures is not due to the recently characterized molybdenum-containing aldehyde dehydrogenase of D. gigas. Out of 13 other strains of ethanol-oxidizing, gram-negative, sulfate-reducing bacteria tested, most strains grew well with either tungstate or molybdate supplementation. In contrast to a recent report, good growth on ethanol of two D. baculatus (Desulfomicrobium) strains (DSM 1741 and DSM 1743) was observed.Abbreviations BV-AIDH Benzylviologen-linked aldehyde dehydrogenase - DCPIP-AIDH 2,6-dichlorophenolindophenol-linked aldehyde dehydrogenase - DTT dithiothreitol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号