首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.  相似文献   

2.
Active trafficking from the Golgi apparatus is involved in acrosome formation, both by delivering acrosomal contents to the nascent secretory vesicle and by controlling organelle growth and shaping. During murine spermiogenesis, Golgi antigens (giantin, beta-COP, golgin 97, mannosidase II) are detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgi-acrosome flow may be relatively unselective, with Golgi residents retrieved before spermiation is complete. Treatment of spermatogenic cells with brefeldin A, a drug that causes the Golgi apparatus to collapse into the endoplasmic reticulum, disrupted the Golgi in both pachytene spermatocytes and round spermatids. However, this treatment did not affect the acrosomal granule, and some beta-COP labeling on the acrosome of elongating spermatids was maintained. Additionally, N-ethylmaleimide sensitive factor, soluble NSF attachment proteins, and homologues of the t-SNARE syntaxin and of the v-SNARE VAMP/synaptobrevin, as well as members of the rab family of small GTPases, are associated with the acrosome (but not the acrosomal granule) in round and elongated spermatids. This suggests that rab proteins and the SNARE machinery for membrane recognition/docking/fusion may be involved in trafficking during mammalian acrosome biogenesis.  相似文献   

3.
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation. This work was supported by grants 83-0211-B-002-184 and 93-2320-B-320-012 from the National Science Council, Taiwan, Republic of China.  相似文献   

4.
The acrosome is a secretory vesicle attached to the nucleus of the sperm. Our hypothesis is that microtubules participate in the membrane traffic between the Golgi apparatus and acrosome during the first steps of spermatid differentiation. In this work, we show that nocodazole-induced microtubule depolarization triggers the formation of vesicles of the acrosomal membrane, without detaching the acrosome from the nuclear envelope. Nocodazole also induced fragmentation of the Golgi apparatus as determined by antibodies against giantin, golgin-97 and GM130, and electron microscopy. Conversely, neither the acrosome nor the Golgi apparatus underwent fragmentation in elongating spermatids (acrosome- and maturation-phase). The microtubule network of round spermatids of azh/azh mice also became disorganized. Disorganization correlated with fragmentation of the acrosome and the Golgi apparatus, as evaluated by domain-specific markers. Elongating spermatids (acrosome and maturation-phase) of azh/azh mice also had alterations in microtubule organization, acrosome, and Golgi apparatus. Finally, the spermatozoa of azh/azh mice displayed aberrant localization of the acrosomal protein sp56 in both the post-acrosomal and flagellum domains. Our results suggest that microtubules participate in the formation and/or maintenance of the structure of the acrosome and the Golgi apparatus and that the organization of the microtubules in round spermatids is key to sorting acrosomal proteins to the proper organelle.  相似文献   

5.
An omega-3 fatty acid, docosahexaenoic acid (DHA), is enriched in testicular membrane phospholipids, but its function is not well understood. The Fads2 gene encodes an enzyme required for the endogenous synthesis of DHA. Using Fads2-null mice (Fads2-/-), we found in our preceding studies that DHA deficiency caused the arrest of spermiogenesis and male infertility, both of which were reversed by dietary DHA. In this study, we investigated a cellular mechanism underlying the DHA essentiality in spermiogenesis. Periodic acid-Schiff staining and acrosin immunohistochemistry revealed the absence of acrosomes in Fads2-/- round spermatids. Acrosin, an acrosomal marker, was scattered throughout the cytoplasm of the Fads2-/- spermatids, and electron microscopy showed that proacrosomal granules were formed on the trans-face of the Golgi. However, excessive endoplasmic reticulum and vesicles were present on the cis-face of the Golgi in Fads2-/- spermatids. The presence of proacrosomal vesicles but lack of a developed acrosome in Fads2-/- spermatids suggested failed vesicle fusion. Syntaxin 2, a protein involved in vesicle fusion, colocalized with acrosin in the acrosome of wild-type mice. In contrast, syntaxin 2 remained scattered in reticular structures and showed no extensive colocalization with acrosin in the Fads2-/- spermatids, suggesting failed fusion with acrosin-containing vesicles or failed transport and release of syntaxin 2 vesicles from Golgi. Dietary supplementation of DHA in Fads2-/- mice restored an intact acrosome. In conclusion, acrosome biogenesis under DHA deficiency is halted after release of proacrosomal granules. Misplaced syntaxin 2 suggests an essential role of DHA in proper delivery of membrane proteins required for proacrosomal vesicle fusion.  相似文献   

6.
The acrosome is an acidic secretory vesicle containing hydrolytic enzymes that are involved in the sperm's passage across the zona pellucida. Imaging of the acrosomal vesicle and the Golgi apparatus in live rhesus monkey spermatids was accomplished by using the vital fluorescent probe LysoTracker DND-26. Concurrently, the dynamics of living spermatid mitochondria was visualized using the specific probe MitoTracker CMTRos and LysoTracker DND-26 detected the acrosomal vesicle from its formation through spermatid differentiation. LysoTracker DND-26 also labeled the Golgi apparatus in spermatogenic cells. In spermatocytes the Golgi is spherical and, in round spermatids, it is localized over the acrosomal vesicle, as confirmed by using polyclonal antibodies against Golgin-95/GM130, Golgin-97, and Golgin-160. Using both live LysoTracker DND-26 imaging and Golgi antibodies, we found that the Golgi apparatus is cast off from the acrosomal vesicle and migrates toward the sperm tail in elongated spermatids. The Golgi is discarded in the cytoplasmic droplet and is undetectable in mature ejaculated spermatozoa. The combined utilization of three vital fluorescent probes (Hoechst 33342, LysoTracker DND-26, and MitoTracker CMTRos) permits the dynamic imaging of four organelles during primate spermiogenesis: the nucleus, the mitochondria, the acrosomal vesicle, and the Golgi apparatus.  相似文献   

7.
Vesicular membrane trafficking during acrosome biogenesis in bull and rhesus monkey spermatogenesis differs from the somatic cell paradigm as imaged dynamically using the Golgi apparatus probes beta-COP, giantin, Golgin-97, and Golgin-95/GM130. In particular, sorting and delivery of proteins seemed less precise during spermatogenesis. In early stages of spermiogenesis, many Golgi resident proteins and specific acrosomal markers were present in the acrosome. Trafficking in both round and elongating spermatids was similar to what has been described for somatic cells, as judged by the kinetics of Golgi protein incorporation into endoplasmic reticulum-like structures after brefeldin A treatment. These Golgi components were retrieved from the acrosome at later stages of differentiation and were completely devoid of immature spermatozoa. Our data suggest that active anterograde and retrograde vesicular transport trafficking pathways, involving both beta-COP- and clathrin-coated vesicles, are involved in retrieving Golgi proteins missorted to the acrosome and in controlling the growth and shape of this organelle.  相似文献   

8.
The localization of an acrosomal protein was studied using a monoclonal antibody MN7 raised against mouse spermatozoa. MN7 specifically recognized the anterior acrosome of several mammalian (mouse, rat, hamster) spermatozoa fixed with paraformaldehyde. An immunoblot study with periodate treatment showed that MN7 recognized a carbohydrate region of a 90 kDa protein in an extract of mouse and rat cauda epididymal spermatozoa. The change in distribution of the MN7 antigen during acrosome development was investigated in the rat testis using the pre-embedding immunoperoxidase technique. The antigen first appeared in the proacrosomic granules of spermatids in steps 1–2. Small vesicles adjacent to the outer acrosomal membrane and the developing acrosomic system were immunoreactive during steps 4–7. The majority of the antigen was then redistributed to the head-cap portion during steps 8–18, and finally restricted to the anterior acrosome in the step 19-spermatid. These results suggest that the antigen is transported to the acrosome by way of the vesicles that originate from the Golgi apparatus during early spermiogenesis, and are then delivered to the final destination within the acrosome by the intra-acrosomal migration during late spermiogenesis.  相似文献   

9.
Summary MN9, a monoclonal antibody raised against mouse spermatozoa, specifically recognizes the equatorial segment of sperm head in several mammalian species, including humans. Colloidal gold-immuno-electron microscopy of mouse spermatozoa has shown that the antigen is localized in the space between the outer and inner acrosome membranes and on the acrosome membranes at the equatorial segment. Immunoblotting after electrophoresis of spermatozoa from the cauda epididymidis has identified two immunoreactive bands: 38 kDa and 48 kDa in mouse, and 48 kDa in rat. During spermiogenesis in rat, this antigen is transported to the equatorial segment via a unique pathway, first appearing in some cisternae of the endoplasmic reticulum and in the Golgi apparatus of spermatids at around step 3. The antigen can further be found on the vesicles at thetrans-side of the Golgi apparatus, in the matrix of the head cap, and on the head cap membrane in step-4 to step-7 spermatids. The antigen appears to be concentrated at the equatorial segment during late spermiogenesis. Neither the (pro-)acrosomic granule nor the surrounding membrane are required in this pathway. This pathway can be termed the Golgi-head cap tract.  相似文献   

10.
Testicular samples were collected to describe the ultrastructure of spermiogenisis in Alligator mississipiensis (American Alligator). Spermiogenesis commences with an acrosome vesicle forming from Golgi transport vesicles. An acrosome granule forms during vesicle contact with the nucleus, and remains posterior until mid to late elongation when it diffuses uniformly throughout the acrosomal lumen. The nucleus has uniform diffuse chromatin with small indices of heterochromatin, and the condensation of DNA is granular. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. Once the acrosome has completed its development, the nucleus of the early elongating spermatid becomes associated with the cell membrane flattening the acrosome vesicle on the apical surface of the nucleus, which aids in the migration of the acrosomal shoulders laterally. One endonuclear canal is present where the perforatorium resides. A prominent longitudinal manchette is associated with the nuclei of late elongating spermatids, and less numerous circular microtubules are observed close to the acrosome complex. The microtubule doublets of the midpiece axoneme are surrounded by a layer of dense staining granular material. The mitochondria of the midpiece abut the proximal centriole resulting in a very short neck region, and possess tubular cristae internally and concentric layers of cristae superficially. A fibrous sheath surrounds only the axoneme of the principal piece. Characters not previously described during spermiogenesis in any other amniote are observed and include (1) an endoplasmic reticulum cap during early acrosome development, (2) a concentric ring of endoplasmic reticulum around the nucleus of early to middle elongating spermatids, (3) a band of endoplasmic reticulum around the acrosome complex of late developing elongate spermatids, and (4) midpiece mitochondria that have both tubular and concentric layers of cristae. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
本实验用电镜放射自显影技术,在注射~3H-岩藻糖后30分钟和1、4、8、24小时示踪大鼠精子细胞合成糖蛋白的情况以及新合成糖蛋白的去路。实验结果表明: 1.在注射~3H-岩藻糖后30分钟到1小时,放射自显影标记最初出现在高尔基体上。岩藻糖分子首先在高尔基体的外周(皮质)部位掺入糖蛋白,随后,新合成的糖蛋白并不直接转运到别处,而在高尔基体中央(髓质)部位作短暂贮存。说明中央部位在功能上是高尔基体的一个重要组成部分。2.~3H-岩藻糖不仅掺入高尔基期和顶帽期精子细胞的高尔基体,而且掺入顶体期精子细胞的高尔基体,说明顶体期的高尔基体仍有合成糖蛋白的功能。3.新合成糖蛋白的去路,在精子细胞发育的不同阶段是不一样的。在高尔基期和顶帽期精子细胞中,新合成的糖蛋白  相似文献   

12.
An acrosome-like structure has been recognized at the apex of mature spermatozoa of both Pyura haustor and Styela plicata. The acrosome-like structure of P. haustor is a slightly depressed ellipsoid, approximately 90 nm × 80 nm × 50 nm, in length, width and height, respectively, while that of S. plicata is an antero-posteriorly elongated, flattened vesicle, approximately 200 nm × 100 nm × 50 nm, in length, width and height, respectively. During spermiogenesis, two vesicles (50–80 nm in diameter) are found in a blister at the apex of early spermatids of both species. These vesicles, presumably derived from the Golgi apparatus, contain moderately electron-dense material. In late spermatids, these two vesicles appear to fuse to form an acrosome-like structure. Because of its extremely reduced size and the paucity of its contents, it is unlikely that the acrosome-like structure of these sperm contain a significant amount of chorion lysin(s). A well developed Golgi apparatus and many Golgi vesicles of various sizes are found in the cytoplasm of spermatids in both P. haustor and S. plicata. It is hypothesized that ascidian spermatozoa contain a poorly developed acrosome, and that the chorion lysin(s) are intercalated into the plasmalemma enclosing the sperm head.  相似文献   

13.
TMF/ARA160 is known to be a TATA element Modulatory Factor (TMF). It was initially identified as a DNA-binding factor and a coactivator of the Androgen receptor. It was also characterized as a Golgi-associated protein, which is essential for acrosome formation during functional sperm development. However, the molecular roles of TMF in this intricate process have not been revealed. Here, we show that during spermiogenesis, TMF undergoes a dynamic change of localization throughout the Golgi apparatus. Specifically, TMF translocates from the cis-Golgi to the trans-Golgi network and to the emerging vesicles surface, as the round spermatids develop. Notably, lack of TMF led to an abnormal spatial orientation of the Golgi and to the deviation of the trans-Golgi surface away from the nucleus of the developing round spermatids. Concomitantly, pro-acrosomal vesicles derived from the TMF-/- Golgi lacked targeting properties and did not tether to the spermatid nuclear membrane thereby failing to form the acrosome anchoring scaffold, the acroplaxome, around the cell-nucleus. Absence of TMF also perturbed the positioning of microtubules, which normally lie in proximity to the Golgi and are important for maintaining Golgi spatial orientation and dynamics and for chromatoid body formation, which is impaired in TMF-/- spermatids. In-silico evaluation combined with molecular and electron microscopic analyses revealed the presence of a microtubule interacting domain (MIT) in TMF, and confirmed the association of TMF with microtubules in spermatogenic cells. Furthermore, the MIT domain in TMF, along with microtubules integrity, are required for stable association of TMF with the Golgi apparatus. Collectively, we show here for the first time that a Golgi and microtubules associated protein is crucial for maintaining proper Golgi orientation during a cell developmental process.  相似文献   

14.
Effects of a single, high dose of orally administered carbendazim (100 mg/kg) on acrosome formation in the early phases of spermiogenesis were examined by electron microscopy and immunocytochemistry up to day 7.5 post-treatment. No obvious abnormality of acrosome development was noted in the Golgi phase spermatids on day 1.5 post-treatment. On day 3, step 1 spermatids were seen in stage III seminiferous tubules. In stage V tubules at this post-treatment interval, direct connections between the trans-side saccules of the Golgi stacks and the outer acrosomic membranes were observed in step 5 spermatids. Similar direct connections between these two organelles were also observed in the advanced round spermatids in later stages at days 4.5 and 7.5. On day 4.5, step 1 and 3 spermatids were seen in stage V tubules. On day 7.5, round spermatids with various abnormalities of acrosome development were observed in stage VII tubules, in addition to the discontinuous and granular acrosomes reported previously. These features were not observed in testes of control animals. In the immunocytochemical analysis using an antibody mMN7 that recognizes a protein delivered from the Golgi apparatus to the acrosome, spermatids exposed to carbendazim showed various abnormal immunostaining patterns in the acrosomes. On the other hand, strong immunoreactivity was observed in the Golgi saccules connecting to the acrosomes. These results suggest that in testis treated with carbendazim acrosome development is impaired during the early phases of spermiogenesis, and material supply from the Golgi apparatus to the acrosome is perturbed, which is a possible cause of the abnormal development. Received: 31 March 1998 / Accepted: 28 May 1998  相似文献   

15.
To date multiple studies exist that examine the morphology of spermatozoa. However, there are limited numbers of data detailing the ontogenic characters of spermiogenesis within squamates. Testicular tissues were collected from Cottonmouths (Agkistrodon piscivorus) and tissues from spermiogenically active months were analyzed ultrastructurally to detail the cellular changes that occur during spermiogenesis. The major events of spermiogenesis (acrosome formation, nuclear elongation/DNA condensation, and flagellar development) resemble that of other squamates; however, specific ultrastructural differences can be observed between Cottonmouths and other squamates studied to date. During acrosome formation vesicles from the Golgi apparatus fuse at the apical surface of the nuclear membrane prior to making nuclear contact. At this stage, the acrosome granule can be observed in a centralized location within the vesicle. As elongation commences the acrosome complex becomes highly compartmentalized and migrates laterally along the nucleus. Parallel and circum‐cylindrical microtubules (components of the manchette) are observed with parallel microtubules outnumbering the circum‐cylindrical microtubules. Flagella, displaying the conserved 9 + 2 microtubule arrangement, sit in nuclear fossae that have electron lucent shoulders juxtaposed on either side of the spermatids basal plates. This study aims to provide developmental characters for squamates in the subfamily Crotalinae, family Viperidae, which may be useful for histopathological studies on spermatogenesis in semi‐aquatic species exposed to pesticides. Furthermore, these data in the near future may provide morphological characters for spermiogenesis that can be added to morphological data matrices that may be used in phylogenetic analyses. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The spermatozoa of both Clavelina lepadiformis and Ciona intestinalis have architectural features characteristic of ascidian spermatozoa that have been previously described. They have an elongated head (6 microm and 3 microm long, respectively) and a single mitochondrion that is closely applied laterally to the nucleus; they lack a midpiece. The acrosome of Clavelina lepadiformis spermatozoa is a moderately electron-dense, pear-shaped flattened vesicle, approx. 300 nm x 200 nm x 40 nm in length, width, and height, respectively. The acrosome of Ciona intestinalis spermatozoa is a moderately electron-dense, round flattened vesicle with an electron-dense plate in its central region. It is approx. 200 nm x 200 nm x 50 nm in length, width, and height, respectively. During spermiogenesis in both ascidians, several proacrosomal vesicles (50-70 nm in diameter) appear in a blister at the future apex of the spermatids. These vesicles appear to be associated with the inner surface of the plasma membrane enclosing the blister. They come into contact with each other along the inner surface of the plasma membrane and fuse to form a horseshoe-shaped acrosomal vesicle, which becomes a round, flattened vesicle during further differentiation. Some speculations about the mechanism of acrosome differentiation, the possible role of the acrosome during fertilization, and in the speciation of ascidians are presented.  相似文献   

17.
In the early stage of Oryzias spermiogenesis, an axonemal bud appears at the distal end of a centriole characterized by its electron dense accessories. When the axoneme begins to grow in the cytoplasm, small vesicles come to surround it. These vesicles are similar to those produced by the Golgi apparatus which lies close to the growing axoneme. At this stage, the spermatid cell membranes disappear, causing transformation of the mononuclear spermatids into a multinucleated syncytium. As each axoneme elongates in the syncytium, it is enveloped by a cylindrical array of vesicles which are most likely derived from the Golgi apparatus. Shortly after this stage, the syncytium is again partitioned by cell membranes, restoring the existence of mononuclear spermatids. The arrayed vesicles fuse with each other to form two concentric membranes surrounding the axoneme. The inner membrane becomes the flagellar membrane and the outer one, the membrane of a flagellar sheath. These observations lead to the conclusion that the formation of the flagellar membrane is due to the fusion of vesicles surrounding the axoneme which are derived from the Golgi apparatus. In the course of spermiogenesis, no indication of an acrosomal structure is observed.  相似文献   

18.
Acrosome biogenesis involves the transport and fusion of Golgi-derived proacrosomal vesicles along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate anchored to the spermatid nucleus. A significant issue is whether the acroplaxome develops in acrosomeless mutant mice. Male mice with a Hrb null mutation are infertile and both spermatids and sperm are round-headed and lack an acrosome. Hrb, a protein that contains several NPF motifs (Asn-Pro-Phe) and interacts with proteins with Eps15 homology domains, is regarded as critical for the docking and/or fusion of Golgi-derived proacrosomal vesicles. Here we report that the lack of an acrosome in Hrb mutant spermatids does not prevent the development of the acroplaxome. Yet the acroplaxome in the mutant contains F-actin but is deficient in keratin 5. We also show that the actin-based motor protein myosin Va and its receptor, Rab27a/b, known to be involved in vesicle transport, are present in the Golgi and Golgi-derived proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. In the Hrb mutant, myosin-Va-bound proacrosome vesicles tether to the acroplaxome, where they flatten and form a flat sac, designated pseudoacrosome. As spermiogenesis advances, round-shaped spermatid nuclei of the mutant display several nuclear protrusions, designated nucleopodes. Nucleopodes are consistently found at the acroplaxome- pseudoacrosome site. Our findings support the interpretation that the acroplaxome provides a focal point for myosin-Va/ Rab27a/b-driven proacrosomal vesicles to accumulate, coalesce, and form an acrosome in wild-type spermatids and a pseudoacrosome in Hrb mutant spermatids. We suggest that nucleopodes develop at a site where a keratin 5-deficient acroplaxome may not withstand tension forces operating during spermatid nuclear shaping.  相似文献   

19.
Membrane trafficking in male germ cells contributes to their development via cell morphological changes and acrosome formation. TBC family proteins work as Rab GTPase accelerating proteins (GAPs), which negatively regulate Rab proteins, to mediate membrane trafficking. In this study, we analyzed the expression of a Rab GAP, TBC1D9, in mouse organs and the intracellular localization of the gene products. Tbc1d9 showed abundant expression in adult mice testis. We found that the Tbc1d9 mRNA was expressed in primary and secondary spermatocytes, and that the TBC1D9 protein was expressed in spermatocytes and round spermatids. In 293T cells, TBC1D9-GFP proteins were localized in the endosome and Golgi apparatus. Compartments that were positive for the constitutive active mutants of Rab7 and Rab9 were also positive for TBC1D9 isoform 1. In addition, TBC1D9 proteins were associated with Rab7 and Rab9, respectively. These results indicate that TBC1D9 is expressed mainly in spermatocytes, and suggest that TBC1D9 regulates membrane trafficking pathways related to Rab9- or Rab7-positive vesicles.  相似文献   

20.
Control of membrane fusion during spermiogenesis and the acrosome reaction   总被引:5,自引:0,他引:5  
Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号