首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gibberellins GA1, GA3, GA4, GA7, GA9 and GA20 were quantified in vegetative and pollen cone buds of juvenile and mature trees of Pinus radiata by combined gas chromatography-mass spectrometry and selected ion monitoring (GC-MS-SIM) using deuterated GAs as internal standards. Higher levels of GA7 and GA9 and lower levels of GA4 were detected in juvenile vegetative buds compared to mature buds, and there were no differences in relation to age for GA1, GA3 and GA20. Conversely, when differences between vegetative and pollen cone buds from a mature tree were studied, the highest levels of GA1 and GA4 were found in pollen cone buds, similar levels of GA3, GA7 and GA9 were observed in both, and ten fold lower levels of GA20 were found in pollen cone buds as compared with vegetative buds. These results indicate a difference in GA metabolism in relation to both the tree age as well as the physiological status of buds: vegetative or reproductive in this conifer.  相似文献   

2.
3.
Applications of the growth promotive gibberellins (GAs) GA4 and 2,2-dimethyl GA4, and of C-16,17 endo-dihydro GA5, which is known to promote flowering while inhibiting stem growth in the long-day grass Lolium temulentum, were made to micropropagated plants of Metrosideros collina cv. Tahiti, a highly ornamental cultivar with an intermittent flowering pattern. Gibberellin A4 and 2,2-dimethyl GA4 stimulated vegetative growth both in elongating shoots, and internodes of shoots developing from buds that were quiescent at the time of GA application. Abscission of the apices of expanding shoots, a feature of mature Metrosideros plants, was inhibited by these GAs, the rejuvenation of micropropagated plantlets being enhanced. However, C-16,17 endo-dihydro GA5 differed from GA4 and 2,2-dimethyl GA4 by having no promotive effects on vegetative growth, and no inhibition of apical abscission. Notwithstanding this contrasting effect on vegetative growth, high doses of GA4 or C-16,17 endo-dihydro GA5 similarly reduced flowering on shoots to which either GA was applied. Reduced flowering in response to applied GAs is common in many woody angiosperms, and in this instance was probably the combined result of abortion of developing floral structures in quiescent buds, and a preferential inhibition of bud break for floral buds relative to vegetative buds, particularly by GA4. Finally, both C-16,17 endo-dihydro GA5 and GA4 strongly inhibited bud break in this woody angiosperm, although GA4 could initially stimulate bud break when applied to vegetative buds close to the expansion stage. The above findings, in toto, highlight the sensitivity of Metrosideros to both classes of GA in a variety of growth and development processes.  相似文献   

4.
Summary Microspectrophotometry following Feulgen staining and autoradiography following (3H)-thymidine labelling were used to study cell-cycle events during pollen development in tobacco (Nicotiana tabacum L.). During normal gametophytic pollen development in the anther and in vitro the generative nucleus passes through the S phase to the G2 phase soon after microspore mitosis, while the vegetative nucleus remains arrested in G1 (=G0). During embryogenie induction by an in vitro starvation treatment of immature pollen ongoing DNA replication in the generative nucleus is completed and followed by DNA replication in the vegetative cell in a large fraction of the pollen grains. Addition of the DNA replication inhibitor hydroxyurea to the starvation medium postpones S phase entry until the pollen is transferred to a rich medium and does not affect embryo formation. These results demonstrate that one of the crucial events of embryogenic induction is the derepression of the G1 arrest in the cell cycle of the vegetative cell.  相似文献   

5.
When applied to spurs of mature Prunus avium before floral initiation, gibberellins GA1, GA4 and GA3 inhibited floral initiation by 9–17%, GA7 by 43%, GA3 by 65–71% and 2,2-dimethyl GA4 by 78%. GA9 and GA20 were inactive. Thus activity only of the GAs with a C-3 hydroxyl was increased markedly by a double bond in the C-1,2 or C-2,3 position, and activity increased with increasing hydroxylation. None of the GAs affected the total number of buds (vegetative and floral) surviving in the spur. Measured by the threshold dose required for activity, seedling shoot growth responses to GA3, GA7, GA1 or GA4 resembled those of floral initiation, but di-methylation of GA4 at C-2 had no effect, and GA9 was as active as GA7. Mature shoots, including those on rooted cuttings, were less responsive to GA treatment than were juvenile shoots, with terminal shoots on mature trees more responsive than spur shoots. Spur shoot growth on mature trees responded to GA3 and to a lesser extent GA7, but not to GA1 or GA4. However, all these GAs promoted the growth of terminal shoots on mature trees to similar extents, whereas 2,2-dimethyl GA4 was less active than GA4 The differences between juvenile and mature shoot growth in sensitivity to a C-1,2 or C-2,3 double bond, and between mature shoot growth and floral initiation in GA-structure requirements, indicate that phase change alters the GA complement and/or GA receptor/transduction mechanisms of P. avium. The difference in sensitivity to 2,2-dimethyl GA4 indicates that floral initiation and growth have different requirements for GA transport and/or action.  相似文献   

6.
Gibberellin A4 (GA4) was identified for the first time in the garden pea (Pisum sativum) L.), by gas chromatography-mass spectrometry. However, in wild-type shoots the level of GA4 was only about 6% of the level of GA1, and it is therefore unlikely that GA4 plays a major role per se in the control of pea stem elongation. In shoots of the le mutant, GA4 was not detected, while the level of GA9 was approximately twice that found in the wild-type. The le mutation also markedly reduced the elongation response to applied GA9. It appears, therefore, that in Pisum the le mutation blocks the 3-hydroxylation of GA9 to GA4, in addition to the 3-hydroxylation of GA20 to GA1. In contrast, the le mutation did not reduce the response to applied GA5, suggesting the step GA5 to GA3 is not catalysed by the enzyme controlled by the Le gene. The step GA5 to GA3 was confirmed in peas by metabolite analysis after treatment with deuterated GA5.  相似文献   

7.
The role of gibberellins in flower bud development was investigated by studying the gib-1 mutant of tomato, Lycopersicon esculentum. This gibberellin-deficient mutant initiates flower buds, but floral development is not completed unless the mutant is treated with gibberellin. Treatment with other plant growth regulators does not induce normal flower development. Development of gib-1 flower buds, as measured by progress toward anthesis, ceases at a bud length of 2.5 millimeters; however, increase in size of the bud continues. Buds between 2.5 and 3.7 millimeters are developmentally arrested but still are capable of developing normally after treatment with gibberellic acid. Anthers of these developmentally arrested buds contain pollen mother cells that are in the G1 phase of premeiotic interphase. Following treatment of developmentally arrested buds with gibberellic acid, premeiotic DNA synthesis and callose accumulation in pollen mother cells are evident by 48 hours posttreatment, and within 66 hours, prophase I of meiosis- and meiosis-related changes in tapetum development are observable.  相似文献   

8.
We investigated the effect of gibberellic acid (GA3) in the fertilization of Clementine mandarin cv. ‘Clemenules’ (Citrus clementina Hort. ex Tan.), a parthenocarpic variety that produces seedless fruit due to its self-incompatible nature, but yields seedy fruits when grown under cross-pollination conditions.Experiments were conducted with on-tree ‘Clemenules’ flowers and ‘Fortune’ mandarin pollen (C. clementina Hort. ex Tan. × C. reticulata Blanco), which is sexually compatible with the former. Preanthesis treatment at −2 days after anthesis (−2 DAA) enhanced ovule abortion in both unpollinated and cross-pollinated (at +2 DAA) flowers. In the latter, the number of pollen tubes reaching the ovules was significantly reduced although pollen grains were not treated; thus, fertilization was partially avoided and seed set was reduced. When GA3 was applied at anthesis (0 DAA) at the time of pollination, ovule abortion was again enhanced, and pollen tube growth was completely arrested; thus, fertilization was prevented and seed set was impeded. When GA3 was applied 24 h after pollination (+1 DAA in flowers pollinated at anthesis), pollen tube growth was impaired but not arrested and ovule abortion was enhanced; therefore, fertilization was not prevented but impaired.We conclude that, when applied the days around anthesis, GA3 (10 mg l−1) impairs fertilization by either enhancing ovule abortion or reducing pollen tube growth, in ‘Clemenules’ flowers under cross-pollination conditions. The intensity of the response depends on the physiological flower state at the moment of treatment.  相似文献   

9.
The barley mutant dbg 576 shows an extreme vegetative dwarf phenotype. This is reversed after the application of GA3 which also induces the mutant florets to become partly fertile. cDNA clones ES1A and ES2A were isolated by differential screening with subtracted probes from a DNA library prepared from mutant leaf blades after GA3 treatment. Both the ES1A and the ES2A mRNA level increases as early as 30 min after GA3 treatment.and decreases later. Accumulation of ES1A and ES2A mRNAs is leaf blade-specific and both are ca. 750 nucleotides long. ES1A encodes a protein of approximately 6 kD which shows a significant homology with mammalian epidermal growth fractors (EGFs). ES2A encodes a protein of 22 kDa with homology, in regions with potential amphiphilic helices, with the D7 family of late embryogenesis-abundant proteins (LEA).  相似文献   

10.
In near-isogenic lines of winter wheat (Triticum aestivum L. cv. Maris Huntsman) grown at 20° C under long days the reduced-height genes, Rht1 (semi-dwarf) and Rht3 (dwarf) reduced the rate of extension of leaf 2 by 12% and 52%, respectively, compared with corresponding rht (tall) lines. Lowering the growing temperature from 20° to 10° C reduced the rate of linear extension of leaf 2 by 2.5-fold (60% reduction) in the rht3 line but by only 1.6-fold (36% reduction) in the Rht3 line. For both genotypes, the duration of leaf expansion was greater at the lower temperature so that final leaf length was reduced by only 35% in the rht3 line and was similar in the Rht3 line at both temperatures. Seedlings of the rht3 (tall) line growing at 20° C responded positively to root-applied gibberellin A1 (GA1) in the range 1–10 μM GA1; there was a linear increase in sheath length of leaf 1 whereas the Rht3 (dwarf) line remained unresponsive. Gibberellins A1, 3, 4, 8, 19, 20, 29, 34, 44 and 53 were identified by full-scan gas chromatography-mass spectrometry in aseptically grown 4-d-old shoots of the Rht3 line. In 12-d-old seedlings grown at 20° C, there were fourfold and 24-fold increases in the concentration of GA1 in the leaf expansion zone of Rht1 and Rht3 lines, respectively, compared with corresponding rht lines. Although GA3 was present at a similar level to GA1 in the rht3 (tall) line it accumulated only fivefold in the Rht3 (dwarf) line. The steady-state pool sizes of endogenous GAs were GA19 ? GA20 = GA1 in the GA-responsive rht3 line whereas in the GA non-responsive Rht3 line the content of GA19≈ GA20 ? GA1. It is proposed that one of the consequences of GA1 action is suppression of GA19-oxidase activity such that the conversion of GA19 to GA20 becomes a rate-limiting step on the pathway to GA1 in GA-responsive lines. In the GA-non-responsive Rht lines it is suggested that GA19 oxidase is not downregulated to the same extent and GA1 accumulates before the next rate-limiting step on the pathway, its 2β-hydroxylation to GA8. The steady-state pool sizes of GA19, 20, 1, 3 and 8 were similar in developmentally equivalent tissues of the rht3 (tall) line growing at 10° C and 20° C despite a 2.5-fold difference in the rate of leaf expansion. In contrast, in the Rht3 (dwarf) line, the extent of accumulation of GA1 reflected the severity of the phenotype at the two temperatures with slower growing tissues accumulating less, not more, GA1. These results are interpreted as supporting the proposed model of regulation of the GA-biosynthetic pathway rather than previous suggestions that GA1 accumulates in GA-insensitive dwarfs as a consequence of reduced growth rates.  相似文献   

11.
Removal of stamens, or even of only the anthers, at an early stage of corolla development, before the start of main anthocyanin production, inhibited both growth and pigmentation of attached corollas of Petunia. When only one or two stamens were removed from one side, the inhibition was restricted to the corolla side adjacent to the detached stamens. Application of gibberellic acid (GA3) substituted for the stamens in its effect on both growth and pigmentation. In detached corollas, isolated at the early-green stage and grown in vitro in sucrose medium, GA3 promoted growth and was essential for anthocyanin synthesis. A marked enhancement of anthocyanin production was observed 48 h before the increase in corolla growth rate. Corollas detached at later stages were able to continue their growth and pigmentation in sucrose without GA3. When Paclobutrazol (-[(4-chlorophenyl)-ethyl]-(1,1-dimethylethyl)-H-1,2,4-triazol-1-ethanol), an inhibitor of gibberellin biosynthesis, was added to the growth medium of in-vitro-grown corollas, pigmentation was inhibited but there was no effect on corolla growth. Low levels of GA3 counteracted the Paclobutrazol effect on pigmentation but did not affect growth. The above results indicate that the effect of GA3 (and probably that of the stamens) on corolla growth is independent of its effect on pigmentation. Gibberellic acid and paclobutrazol had no effect on [14C]sucrose uptake by in-vitro-grown corollas. The activity of phenylalanine ammonialyase was correlated with the effect of stamens and GA3 on pigmentation in corollas grown in vivo and in vitro.Abbreviations GA gibberellin - GA3 gibberellic acid - PAC Paclobutrazol - PAL phenylalanine ammonia-lyase  相似文献   

12.
Changes in gibberellins (GAs), indole-3-acetic acid (IAA), and cytokinins associated with the transition from vegetative growth to reproductive growth in Humulus lupulus L. buds and leaves harvested at fortnight intervals were studied. During vegetative growth, GA1 increased gradually and the lowest content was observed during flower development. Both GA3 and GA4 showed a dramatic increase in the samples taken from the apical part of axillary branches from plants 4–5 m high, which corresponds to the maximum vegetative development prior to macroscopically visible inflorescences. Notable increases in the cytokinins trans-zeatin (t-Z), isopentenyladenine (iP), and the riboside and ribotide forms of iP were also obtained. The auxin, indole-3-acetic acid, was the most abundant plant hormone, and its content was highest during vegetative growth. These results show for the first time a relationship between endogenous hormone profiles and both vegetative and reproductive development in hop plants, which may be relevant for future research on the control of the flowering by exogenous hormone applications.  相似文献   

13.
The effect of 100 mgl–1 gibberellic acid (GA3) on flowering and fruit ripening synchrony, fruit set, fruit fresh weight, and vegetative growth were studied for different size classes of coffee (Coffea arabica L. cv. Guatemalan) flower buds. Flower buds that were > 4 mm, but not developed to the candle stage at the time of GA3 treatment, reached anthesis 20 days earlier than the controls, and their development was independent of precipitation, unlike the controls. Fruit from buds that were treated with GA3 at the candle stage showed earlier and more synchronous ripening than the control, although no differences in flowering were found during anthesis. Buds that were smaller than 4 mm at the time of treatment did not respond to GA3 applications. Treatment with GA3 did not affect fruit set, fresh weight of fruits, or vegetative shoot growth.  相似文献   

14.
Gibberellins A12 (GA12), GA53, GA44, GA19, GA17, GA20, GA29, GA1, and GA8 have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Seven of these gibberellins (GAs) have been quantified by capillary gas chromatography-selected ion monitoring using internal standards of [14C4]GA53, [14C4]GA44, [2H2] GA19, [13C1]GA20, [13C1]GA29, [13C1]GA1, and [13C1]GA8. Quantitative data from extracts of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings support the operation of the early 13-hydroxylation pathway in vegetative shoots of Zea mays. These data support the positions in the pathway blocked by the mutants, previously assigned by bioassay data and metabolic studies. The GA levels in dwarf-2, dwarf-3, and dwarf-5 were equal to, or less than, 2.0 nanograms per 100 grams fresh weight, showing that these mutants are blocked for steps early in the pathway. In dwarf-1, the level of GA1 was very low (0.23 nanograms per 100 grams fresh weight) and less than 2% of that in normal shoots, while GA20 and GA29 accumulated to levels over 10 times those in normals; these results confirm that the dwarf-1 mutant blocks the conversion of GA20 to GA1. Since the level of GAs beyond the blocked step for each mutant is greater than zero, each mutated gene probably codes for an altered gene product, thus leading to impaired enzyme activities.  相似文献   

15.
Summary Young ears of maize were cultured in two different liquid media containing either kinetin (KN) or kinetin + gibberellic acid (KN + GA3) in order to manipulate stamen and gynoecium development. In KN medium, stamens developed and gynoecia aborted in the flowers of the cultured immature ears. In the KN + GA3 medium, however, ovaries with silks developed and stamens aborted. These differential morphological events were recorded with SEM photomicrographs at regular intervals after excision of ear inflorescences. In addition, the mitotic activity in the developing or aborting organs was determined over a 75-h period. It increased from 6% to 14% in developing organs (i.e. stamens in KN medium, and gynoecia in KN + GA3 medium) and gradually decreased to 1% in the degenerating organs (i.e. gynoecia in KN medium, and stamens in KN + GA3 medium) by 45 h of culture. The mitotic activity reached zero in degenerating flower organs by 75 h of culture. Whether these differential sensitivities to the exogenously applied members of these two plant growth regulator classes are unique to our in vitro system or reflect a more general control feature of in vivo inflorescences must await further clarification.  相似文献   

16.
Fei H  Zhang R  Pharis RP  Sawhney VK 《Planta》2004,219(4):649-660
Earlier, we reported that mutation in the Male Sterile33 (MS33) locus in Arabidopsis thaliana causes inhibition of stamen filament growth and a defect in the maturation of pollen grains [Fei and Sawhney (1999) Physiol Plant 105:165–170; Fei and Sawhney (2001) Can J Bot 79:118–129]. Here we report that the ms33 mutant has other pleiotropic effects, including aberrant growth of all floral organs and a delay in seed germination and in flowering time. These defects could be partially or completely restored by low temperature or by exogenous gibberellin A4 (GA4), which in all cases was more effective than GA3 Analysis of endogenous GAs showed that in wild type (WT) mature flowers GA4 was the major GA, and that relative to WT the ms33 flowers had low levels of the growth active GAs, GA1 and GA4, and very reduced levels of GA9, GA24 and GA15, precursors of GA4. This suggests that mutation in the MS33 gene may suppress the GA biosynthetic pathway that leads to GA4 via GA9 and the early 13-H C20 GAs. WT flowers also possessed a much higher level of indole-3-acetic acid (IAA), and a lower level of abscisic acid (ABA), relative to ms33 flowers. Low temperature induced partial restoration of male fertility in the ms33 flowers and this was associated with partial increase in GA4. In contrast, in WT flowers GA1 and GA4 were very much reduced by low temperature. Low temperature also had little effect on IAA or ABA levels of ms33 flowers, but did reduce (>2-fold) IAA levels in WT flowers. The double mutants, ms33 aba1-1 (an ABA-deficient mutant), and ms33 spy-3 (a GA signal transduction mutant) had flower phenotypes similar to ms33. Together, the data suggest that the developmental defects in the ms33 mutant are unrelated to ABA levels, but may be causally associated with reduced levels of IAA, GA1 and GA4, compared to WT flowers.Abbreviations ABA Abscisic acid - GA Gibberellin - GC-MS-SIM Gas chromatography-mass spectrometry-selected ion monitoring - IAA Indole-3-acetic acid - ms33 Male sterile33 mutant - PP333 Paclobutrazol - WT Wild type  相似文献   

17.
Silene latifolia is a dioecious plant in which sex is determined by heteromorphic sex chromosomes. In female plants, stamen development is arrested before microspore mother cells are formed. In this study, we isolated four cDNAs (SlSKP1-1 to 4) encoding ASK1-like protein as expression markers to reveal when expression levels are reduced in arrested stamens of female flowers. Expression patterns of the SlSKP1 genes were analyzed by in-situ hybridization. We use the flower development classification of Grant et al. (in Plant J 6:471–480, 1994). SlSKP1 genes were highly expressed in primary parietal cells and primary sporogenous cells that develop into microspore mother cells in male flowers. Expression levels started to be reduced in the external stamens of the female flowers when stamen development was arrested at stage 7. Although microspore mother cells could not be developed in female flowers and SlSKP1 expression may be unnecessary in arrested stamens, SlSKP1 genes were still expressed in sporogenous cells of degenerated stamens at stage 8. Parietal cells stopped differentiating earlier than sporogenous cells in arrested stamens. These results suggest that not all types of cell are arrested simultaneously at a particular stage of stamen development during stamen suppression of S. latifolia.  相似文献   

18.
In vitro vegetative multiplication of sugarbeet was obtained by culturing of inflorescence explants. Subapical segments or 5-mm-long tips from nine varieties developed axillary shoots (up to 50 per tip) on a medium containing indolebutyric acid (IBA) and benzylaminopurine (BAP). Zeatin was ineffective as cytokinin. Gibberellic acid (GA3) enhanced the process. Such vegetative shoots were subsequently isolated and were each allowed to develop up to 20 supplementary axillary shoots on a multiplication medium containing IBA, BAP, and naphthaleneacetic acid (NAA). Rooting of shoots was obtained in the absence of growth regulators and plants were established.  相似文献   

19.
Endogenous gibberellins (GAs) were extracted from safflower (Carthamus tinctorius L.) stems and detected by capillary gas chromatography-mass spectrometry from which GA1, GA3, GA19,, GA20, GA29, and probably, GA44 were detected. The detection of these GAs suggests that the early 13-OH biosynthetic pathway is prevalent in safflower shoots. Deuterated GAs were used as internal standards and GA concentrations were determined in stems harvested at weekly intervals. GA1 and GA19 levels per stem increased but concentrations per gram dry weight decreased over time. GA20 was only detected in young stem tissue.Gibberellic acid (GA3) was also applied in field trials and both GA3 and the GA biosynthetic inhibitor, paclobutrazol, were applied in growth chamber tests. GA3 increased epidermal cell size, internode length, and increased internode cell number causing stem elongation. Conversely, paclobutrazol reduced stem height, internode and cell size, cell number and overall shoot weight. In field tests, GA3 increased total stem weight, but decreased leaf weight, flower bud number and seed yield. Thus, GA3 promoted vegetative growth at the expense of reproductive commitment. These studies collectively indicate a promotory role of GAs in the control of shoot growth in safflower, and are generally consistent with gibberellin studies of related crop plants. Author for correspondence  相似文献   

20.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号