首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Irradiation of soluble dynein 1 from sea urchin sperm flagella at 254 nm in the presence of 50 microM ATP and 100 microM inorganic vanadate (Vi) cleaves the alpha and beta heavy chains into approximately equal quantities of two polypeptides of Mr 228,000 and 200,000, with a conversion efficiency of about 63%. A similar cleavage occurs in the presence of Vi and either ADP or 8-azidoadenosine 5'-triphosphate (8-N3ATP); in the latter case, 8-N3ATP becomes covalently bound principally to the Mr 228,000 polypeptide. No detectable amount of these fragments is formed if either the Vi or the nucleotide is omitted or in the presence of Vi and 50 microM AMP. These results emphasize the basic similarity of the two ATPases associated with the alpha and beta heavy chain subunits of dynein 1 and give a mean Mr of 428,000 for the intact heavy chains.  相似文献   

2.
Chlamydomonas 12 S dynein, which makes up part of the outer arm of the flagellar axoneme, consists of three polypeptides of 330,000, 22,000, and 18,000 daltons. We have used 8-azidoadenosine 5'-triphosphate (8-N3ATP), a photoaffinity analog of ATP, to investigate which of the dynein polypeptides contains the site of ATP hydrolysis. 8-N3ATP is a competitive inhibitor of the hydrolysis of ATP by 12 S dynein and is hydrolyzed by 12 S dynein in an ATP- and vanadate-sensitive fashion, indicating that it binds to the 12 S dynein hydrolytic site in the same way as ATP. When dynein was incubated with [gamma-32P]- or [alpha-32P]8-N3ATP in the presence of UV light to activate the azido moiety, the analog was incorporated into 12 S dynein's heavy polypeptide chain, but not its light chains. The incorporation was UV-dependent, was blocked by addition of ATP or vanadate plus ADP to the reaction mixture, and did not occur in heat-denatured dynein. These results strongly suggest that the hydrolytic site of 12 S dynein is contained in its heavy chain.  相似文献   

3.
Irradiation of the outer-arm dynein ATPase from sea urchin sperm flagella at 365 nm in the presence of 50-200 microM vanadate (Vi) and 1 mM manganese acetate, in the absence of ATP, cleaves the alpha and beta heavy chains at a specific site, termed the V2 site, to form discrete peptides of Mr approximately 260,000 and 170,000 from the alpha chain and of Mr approximately 255,000 and 175,000 from the beta chain, with a yield of 80%. This cleavage at the V2 site is not correlated with any direct effect on the dynein ATPase activity. In the presence of 100 microM Vi, the half-times for cleavage of the alpha and beta chains are about 12 and 50 min, respectively. The rate of heavy chain cleavage shows a sigmoidal dependence upon Vi concentration, with half-maximal rate occurring at 58 +/- 7 microM, consistent with the chromophore responsible for cleavage being tri-vanadate. Addition of 10 microM ATP or ADP, or of 100 microM CTP or UTP, to the irradiation medium inhibits cleavage at the V2 site, and results in a slow cleavage occurring at the V1 site described previously. The peptides produced by sequential cleavage at the V2 and then the V1 sites indicate that the sites are separated by about 100,000 Da along the length of each heavy chain. Photoaffinity labeling with [alpha-32P] 8-azidoadenosine 5'-triphosphate (8-N3ATP) gives specific incorporation of 32P into both the Mr 255,000 and 175,000 peptides of the beta chain but into only the Mr 260,000 peptide of the alpha chain. These results suggest that V2 cleavage occurs on a loop of the heavy chain that forms part of the ATP-binding site, close to the locus of 8-N3ATP attachment.  相似文献   

4.
The photoaffinity analogs 2-azidoadenosine 5'-tri(di)-phosphate (2-N3AT(D)P) and 8-azidoadenosine 5'-triphosphate (8-N3ATP) have been used to probe the substructural organization of the nucleotide binding pockets within the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both 2-N3ATP and 8-N3ATP are competitive inhibitors of dynein ATP hydrolysis, and both analogs are themselves hydrolyzed by the alpha-beta dimer. Following vanadate-dependent photolysis at the V1 site (by UV irradiation in the presence of Mg2+, ATP, and vanadate), both probes exclusively labeled the larger fragment from the alpha chain. In contrast, within the beta chain the predominant insertion sites for the two analogs were located on opposite sides of the V1 site. Therefore, the hydrolytic pockets of these two molecules have different substructures. Vanadate-dependent photolysis of the alpha and beta chains at the V2 sites (by UV irradiation in the presence of vanadate and Mn2+) profoundly affected the predominant modification sites; for example, following photolysis at the V2a site neither fragment of the alpha chain was photolabeled by 2-N3ATP or 8-N3ATP. Based on the photolabeling patterns obtained, the single V2 site within the beta chain is predicted to be analogous to the V2b site within the alpha chain. The results support the hypothesis that the V2 sites occur within the ATP binding pockets, and indicate that these functional domains are composed of portions of the heavy chains which are linearly separated by up to at least 100,000 daltons. Thus, the central region of each dynein heavy chain must be extensively folded so as to bring the widely separated photocleavage and photolabeling sites together within a single catalytic unit.  相似文献   

5.
We report here on the UV-induced vanadate-dependent cleavage of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both polypeptides are cleaved at a single site (termed the V1 site) by UV irradiation in the presence of Mg2+, ATP, and vanadate. The alpha chain yields fragments of Mr 290,000 and 190,000. Fragments of Mr 255,000 and 185,000 are obtained from the beta chain. Ultraviolet irradiation of the alpha and beta chains in the presence of vanadate and Mn2+ (but no nucleotide) induces cleavage of both molecules at sites (termed the V2 sites) distinct from the V1 sites. The single V2 site within the beta chain is located 75,000 daltons from the site of V1 cleavage within the Mr 255,000 V1 fragment. The alpha chain contains three distinct sites of V2 cleavage; all are located within the Mr 290,000 V1 fragment, 60,000, 90,000, and 100,000 daltons from the site of V1 cleavage. From these studies, we estimate the masses of the alpha and beta heavy chains to be 480,000 and 440,000 daltons, respectively.  相似文献   

6.
NH2-terminal analysis of the alpha and beta heavy chain polypeptides (Mr greater than 400,000) from the outer arm dynein of sea urchin sperm flagella, compared with that of the 230,000- and 200,000-Mr peptides formed upon photocleavage of dynein by irradiation at 365 nm in the presence of vanadate and ATP, shows that the NH2 termini of the intact chains are acetylated and that the 230,000- and 200,000 Mr peptides constitute the amino- and carboxy-terminal portions of the heavy chains, respectively. Tryptic digestion of the beta heavy chain is known to separate it into two particles, termed fragments A and B, that sediment at 12S and 6S (Ow, R. A., W.-J. Y. Tang, G. Mocz, and I. R. Gibbons, 1987. J. Biol. Chem. 262:3409-3414). Immunoblots against monoclonal antibodies specific for epitopes on the beta heavy chain, used in conjunction with photoaffinity labeling, show that the ATPase-containing fragment A is derived from the amino-terminal region of the beta chain, with the two photolytic sites thought to be associated with the purine-binding and the gamma-phosphate-binding areas of the ATP-binding site spanning an approximately 100,000 Mr region near the middle of the intact beta chain. Fragment B is derived from the complementary carboxy-terminal region of the beta chain.  相似文献   

7.
An important challenge is to understand the functional specialization of dynein heavy chains. The ciliary outer arm dynein from Tetrahymena thermophila is a heterotrimer of three heavy chains, called alpha, beta and gamma. In order to dissect the contributions of the individual heavy chains, we used controlled urea treatment to dissociate Tetrahymena outer arm dynein into a 19S beta/gamma dimer and a 14S alpha heavy chain. The three heavy chains remained full-length and retained MgATPase activity. The beta/gamma dimer bound microtubules in an ATP-sensitive fashion. The isolated alpha heavy chain also bound microtubules, but this binding was not reversed by ATP. The 19S beta/gamma dimer and the 14S alpha heavy chain could be reconstituted into 22S dynein. The intact 22S dynein, the 19S beta/gamma dimer, and the reconstituted dynein all produced microtubule gliding motility. In contrast, the separated alpha heavy chain did not produce movement under a variety of conditions. The intact 22S dynein produced movement that was discontinuous and slower than the movement produced by the 19S dimer. We conclude that the three heavy chains of Tetrahymena outer arm dynein are functionally specialized. The alpha heavy chain may be responsible for the structural binding of dynein to the outer doublet A-tubule and/or the positioning of the beta/gamma motor domains near the surface of the microtubule track.  相似文献   

8.
Conformational changes of the beta chain of the outer-arm dynein from sea urchin sperm flagella in relation to ATP hydrolysis was examined by tryptic digestion. Tryptic digestion of the beta chain in the presence of 2 mM ATP (ADP) and 100 microM vanadate (Vi) or in the presence of 4 mM ATP gamma S produced different polypeptides from in the case of no addition. The difference was similar to the result previously reported for 21S outer-arm dynein heavy chains [Inaba, K. & Mohri, H. (1989) J. Biol. Chem. 264, 8384-8388]. Unlike the tryptic digestion pattern of 21S dynein heavy chains, however, the 135-kDa polypeptide was consistently produced from the beta chain, even in the presence of ATP (ADP) and Vi. The tryptic digestion pattern of the 21S particle reconstituted from the separated a chain, the beta/IC1 complex and the IC2/IC3 complex [Tang, W.-J.Y., Bell, C.W., Sale, W.S., & Gibbons, I.R. (1982) J. Biol. Chem. 257, 508-515] was similar to that of intact 21S dynein; the 135-kDa polypeptide was only slightly produced in the presence of ATP and Vi. The digestion rate constant of the 135-kDa polypeptide from the beta chain in the presence of ATP and Vi was significantly decreased as compared with in the case of 21S dynein or that of the reconstituted 21S particle. These results suggest that the trypsin sensitivity of the 135-kDa region of the beta chain changes with the association of the beta/ICI complex with the alpha chain and the IC2/IC3 complex in the presence of ATP and Vi.  相似文献   

9.
Outer-arm dynein purified from trout spermatozoa was disrupted by low-ionic-strength dialysis, and the resulting subunits were separated by sucrose density-gradient centrifugation. The intact 19 S dynein, containing the alpha- an beta-heavy chains, intermediate chains (ICs) 1-5 and light chains (LCs) 1-6, yielded several discrete particles: a 17.5 S adenosine triphosphatase (ATPase) composed of the alpha- and beta-chains ICs 3-5 and LC 1; a 9.5 S complex containing ICs 1 and 2 together with LCs 2, 3, 4, and 6; and a single light chain (LC 5), which sedimented at approximately 4 S. In some experiments, ICs 3-5 also separated from the heavy chain complex and were obtained as a distinct subunit. Further dissociation of the 17.5 S particle yielded a 13.1 S ATPase that contained the beta-heavy chain and ICs 3-5. The polypeptide compositions of the complexes provide new information on the intermolecular associations that occur within dynein. Substructural features of the trout dynein polypeptides also were examined. The heavy chains were subjected to vanadate-mediated photolysis at the V1 sites by irradiation at 365 nm in the presence of Mg2+, ATP, and vanadate. Fragment pairs of relative molecular mass (Mr) 245,000/185,000 and 245,000/170,000 were obtained from the alpha- and beta-heavy chains, respectively. Photolysis of these molecules at their V2 sites, by irradiation in the presence of vanadate and Mn2+, yielded fragments of Mr 160,000/270,000 and 165,000/250,000, respectively. These values confirm that the alpha- and beta-heavy chains have masses of 430,000 and 415,000 daltons, respectively. Immunological analysis using monoclonal antibodies revealed that one intermediate chain from trout dynein (IC 2) contains epitopes present in two different intermediate chains from Chlamydomonas dynein. This indicates that specific sequences within the dynein intermediate chains have been highly conserved throughout evolution.  相似文献   

10.
One-dimensional diffusion of microtubules bound to flagellar dynein   总被引:21,自引:0,他引:21  
R D Vale  D R Soll  I R Gibbons 《Cell》1989,59(5):915-925
Dynein is a multisubunit ATPase that powers microtubule-based motility. We find that a dissociated dynein particle containing the beta heavy chain subunit translocates microtubules unidirectionally over a glass surface in the presence of ATP. However, after nucleotide hydrolysis is inhibited by vanadate, unidirectional translocation ceases, and microtubules instead undergo irregular back-and-forth motion along their longitudinal axes. Quantitative analysis reveals that this motion is due to thermal-driven diffusion, but, unlike a particle undergoing Brownian motion, the diffusion is restricted to one dimension. The properties of the diffusional movement indicate that dynein can interact with microtubules in a way that permits the latter to diffuse only along their longitudinal axes. This weak binding interaction may constitute an important intermediate state in dynein's force-generating cycle.  相似文献   

11.
Irradiation of demembranated flagella of sea urchin sperm at 365 nm in the presence of 0.05-1 mM MgATP and 5-10 microM vanadate (Vi) cleaves the alpha and beta heavy chains of the outer arm dynein at the same site and at about the same rate as reported previously for the solubilized dynein (Gibbons, I. R., Lee-Eiford, A., Mocz, G., Phillipson, C. A., Tang, W.-J. Y., and Gibbons, B. H. (1987) J. Biol. Chem. 262, 2780-2786). The decrease in intact alpha and beta heavy chain material is biphasic, with about 80% being lost with a half-time of 8-10 min, and the remainder more slowly. Five other axonemal polypeptides of Mr greater than 350,000 are lost similarly, concomitant with the appearance of at least 9 new peptides of Mr 150,000-250,000. The motility of irradiated sperm flagella upon subsequent dilution into reactivation medium containing 1 mM ATP and 2.5 mM catechol shows a progressive decrease in flagellar beat frequency for irradiation times that produce up to about 50% cleavage of the dynein heavy chains; more prolonged irradiation causes irreversible loss of motility. Competition between photocleaved and intact outer arm dynein for rebinding to dynein-depleted sperm flagella shows that cleavage has little effect upon the ability for rebinding, although the cleaved dynein partially inhibits subsequent motility. Substitution of MnATP for the MgATP in the irradiation medium prevents the loss of all of the axonemal polypeptides during irradiation for up to 60 min and also protects the potential for subsequent flagellar motility. It is concluded that loss of the five axonemal polypeptides upon irradiation results from a Vi-sensitized photocleavage similar to that which occurs in the alpha and beta heavy chains of outer arm dynein and that these polypeptides represent Vi-inhibitable ATPase subunits of dyneins located in the inner arms and possibly elsewhere in the flagellar axoneme.  相似文献   

12.
Dynein 1 was extracted from sperm flagella of the sea urchin Tripneustes gratilla with 0.6 M NaCl and dialyzed against 0.5 mM EDTA, 14 mM 2-mercaptoethanol, 5 mM imidazole/HCl buffer, pH 7.0, for 24-48 h. In some cases, fractions containing the alpha heavy chain and the beta/intermediate chain 1 complex (beta/IC1) were separated by density gradient centrifugation in the same solution. Treatment of the samples at a trypsin:protein ratio of 1:10 w/w for 32 min at room temperature yields a crude digest from which Fragment A is purified by density gradient centrifugation. The purified Fragment A consists of two principal peptides (Mr = 195,000 and 130,000) that cosediment with the peak of ATPase activity at 12.5 S, which is slightly faster than the 11 S of the original beta/IC1 complex. When digests of the separated alpha chain and of the beta/IC1 complex are followed as a function of time, the early cleavages of the two heavy chains (Mr = 428,000) resemble each other in that both lead to similarly sized peptides of Mr 316,000 and 296,000, but only in the beta/IC1 fraction does the digestion proceed to form Fragment A. The remainder of the beta chain, termed Fragment B, occurs as an Mr 110,000 peptide sedimenting at 5.7 S with no associated ATPase activity. Fragment A has a specific ATPase activity of 4.3 mumol Pi X min-1 X mg-1, with a Km of 29 microM in 0.1 M NaCl medium, and an apparent Ki for inhibition by vanadate of 1.2 microM in the absence of salt, and 22 microM in 0.6 M NaCl. Photoaffinity labeling with [alpha-32P]8-azidoadenosine 5'-triphosphate indicates that the ATP binding site on the beta chain of dynein 1 is located on the Mr 195,000 peptide of Fragment A. The possibility that Fragments A and B of the beta/IC1 complex may correspond to the head and tail regions of the tadpole-shaped particle seen by electron microscopy is discussed.  相似文献   

13.
We have used the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to examine protein-protein associations within purified outer arm dynein and axonemes from Chlamydomonas flagella. When axonemes were treated with 0.5-1 mM EDC in either the presence or absence of ATP/vanadate, a polypeptide band of Mr 127,000 recognized by monoclonal antibody 1878A (specific for the Mr 78,000 intermediate chain (IC78) of outer arm dynein) was generated. This conjugate was not obtained when purified dynein was treated with EDC. Further immunological analysis demonstrated that this complex also contained alpha- (but not beta-) tubulin. These results indicate that IC78 interacts with alpha-tubulin in situ in an ATP-insensitive manner. Identification of this interface between dynein and tubulin suggests that IC78, which probably is located at the base of the dynein particle (King, S. M., and Witman, G. B. (1990) J. Biol. Chem. 265, 19807-19811), contributes to the structural attachment of the dynein arms to the A-tubules of the outer doublet microtubules. Analysis of the cross-linked products from the purified dynein revealed several additional interactions involving the intermediate chains; these adducts provide further evidence for an intermediate chain/light chain complex within dynein and confirm that IC78 and IC69 associate directly.  相似文献   

14.
We describe here the vanadate-dependent photocleavage of the gamma heavy chain from the Chlamydomonas outer arm dynein and the pathways by which this molecule is degraded by endoproteases. UV irradiation in the presence of ATP, Mg2+, and vanadate cleaves the gamma chain at a single site (termed V1) to yield fragments of Mr 235,000 and 180,000. Irradiation in the presence of vanadate and Mn2+ results in cleavage of the gamma chain at two other sites (termed V2a and V2b) to yield fragment pairs of Mr 215,000/200,000 and 250,000/165,000. The mass of the intact chain is therefore estimated to be 415,000 D. We have located the major tryptic and staphylococcal protease cleavage sites in the gamma chain, determined the origins of the resulting fragments, and identified the regions which contain the epitopes recognized by two different monoclonal antibodies. Both antibodies react with the smaller V1 fragment; the epitope recognized by antibody 25-8 is within 9,000-52,000 D of the original gamma-chain terminus contained in that fragment, whereas that recognized by antibody 12 gamma B is within 16,000 D of the V1 site. The data permit the construction of a linear map showing the structural organization of the polypeptide. The substructure of the gamma chain is similar to that of the alpha and beta chains of the outer arm dynein with regard to polarity as defined by the sites of vanadate-dependent photocleavage, and to that of the beta chain with regard to a highly sensitive protease site located approximately 10,000 D from the original terminus contained in the smaller V1 fragment.  相似文献   

15.
Irradiation of soluble dynein 1 from sea urchin sperm flagella at 365 nm in the presence of MgATP and 0.05-50 microM vanadate (Vi) cleaves the alpha and beta heavy chains (Mr 428,000) at their V1 sites to give peptides of Mr 228,000 and 200,000, without the nonspecific side effects produced by irradiation at 254 nm as described earlier (Lee-Eiford, A., Ow, R. A., and Gibbons, I. R. (1986) J. Biol. Chem. 261, 2337-2342). The decrease in intact heavy chain material is biphasic; in 10 microM Vi, approximately 80% occurs with a half-time of 7 min and the remainder with a half-time of about 90 min, and the yield of cleavage peptides is better than 90%. Loss of dynein ATPase activity appears to be a direct result of the cleavage process and is not significantly affected by the presence of up to 0.1 M cysteamine (CA, 60-23-1) or 2-aminoethyl carbamimidothioic acid dihydrobromide (CA, 56-10-0) as free radical trapping agents. The concentration of Vi required for 50% maximal initial cleavage rate is 4.5 microM, while that for 50% ATPase inhibition is 0.8 microM, both in a 0.6 M NaCl medium. In the presence of 20 microM Vi, CTP and UTP support cleavage at about half the rate of ATP, whereas GTP and ITP support cleavage only if the Vi concentration is raised to about 200 microM. Substitution of any of the transition metal cations Cr2+, Mn2+, Fe2+, or Co2+ for the usual Mg2+ suppresses the photocleavage, presumably by quenching the excited chromophore prior to scission of the heavy chain. The photocleaved dynein 1 binds to dynein-depleted flagella similarly to intact dynein 1, but upon reactivation of the flagella with 1 mM ATP their motility is partially inhibited, rather than being augmented as with intact dynein. These results indicate that Vi acts as a photosensitizing catalyst and suggest that the cleavage proceeds through excitation of Vi bound to dynein at the hydrolytic ATP binding site on each heavy chain, probably in a dynein X MgADP X Vi complex. The exquisite specificity of Vi-sensitized photocleavage will aid the peptide mapping of dynein heavy chains and may be of broader use in studies of protein structure.  相似文献   

16.
Two dyneins can be extracted from Tetrahymena ciliary axonemes. The 22S dynein contains three heavy chains (HC), sediments at 22S in a sucrose gradient, and makes up the outer arms. The 14S dynein contains two to six HCs, sediments at 14S, and is thought to contribute to formation of the inner arms. We have identified two large proteins that are extracted from Tetrahymena axonemes with high salt and that sediment together at approximately 18S. The two large proteins cleave when subjected to UV light in the presence of ATP and vanadate, suggesting both proteins are dynein HC. Antibodies against one of the 18S HCs do not recognize 22S dynein HCs. Antibodies to 22S dynein HC do not bind appreciably to 18S dynein photocleavage fragments. Taken together, these results indicate that the large proteins that sediment at 18S are axonemal dynein heavy chains.  相似文献   

17.
Glass-adsorbed intact sea urchin outer arm dynein and its beta/IC1 subunit supports movement of microtubules, yet does not form a rigor complex upon depletion of ATP (16). We show here that rigor is a feature of the isolated intact outer arm, and that this property subfractionates with its alpha heavy chain. Intact dynein mediates the formation of ATP-sensitive microtubule bundles, as does the purified alpha heavy chain, indicating that both particles are capable of binding to microtubules in an ATP-sensitive manner. In contrast, the beta/IC1 subunit does not bundle microtubules. Bundles formed with intact dynein are composed of ribbon-like sheets of parallel microtubules that are separated by 54 nm (center-to-center) and display the same longitudinal repeat (24 nm) and cross-sectional geometry of dynein arms as do outer doublets in situ. Bundles formed by the alpha heavy chain are composed of microtubules with a center-to-center spacing of 43 nm and display infrequent, fine crossbridges. In contrast to the bridges formed by the intact arm, the links formed by the alpha subunit are irregularly spaced, suggesting that binding of the alpha heavy chain to the microtubules is not cooperative. Cosedimentation studies showed that: (a) some of the intact dynein binds in an ATP-dependent manner and some binds in an ATP-independent manner; (b) the beta/IC1 subunit does not cosediment with microtubules under any conditions; and (c) the alpha heavy chain cosediments with microtubules in the absence or presence of MgATP2-. These results suggest that the structural binding observed in the intact arm also is a property of its alpha heavy chain. We conclude that whereas force-generation is a function of the beta/IC1 subunit, both structural and ATP-sensitive (rigor) binding of the arm to the microtubule are mediated by the alpha subunit.  相似文献   

18.
Two isozymic forms of cGMP-dependent protein kinase (designated types I alpha and I beta) were purified to homogeneity from bovine aorta smooth muscle. Type I alpha was apparently the same as the well characterized bovine lung cGMP-dependent protein kinase. Type I beta had a subunit Mr = 80,000 compared with Mr = 78,000 for type I alpha, and both forms were dimeric with similar calculated native Mr (170,000-178,000). Both enzymes contained two cGMP-binding sites per subunit, exhibited similar specificities for the peptide substrates tested, photoaffinity labeled with 8-N3[32P] cAMP, and catalyzed autophosphorylation. Silver-stained peptide maps of types I alpha and I beta were similar but not identical; however, autoradiographs of peptide maps of these enzymes prelabeled by either autophosphorylation or photoaffinity labeling showed clearly different patterns. The amino-terminal sequence of a breakdown product of type I beta could not be aligned confidently with any of the published sequence of bovine lung cGMP-dependent protein kinase. [3H]cGMP dissociation curves for types I alpha and I beta were both biphasic, but the dissociation rate of the slow component of type I beta was faster than the corresponding component of type I alpha. The concentration of cGMP required for half-maximal activation (K alpha) was slightly lower for type I alpha than for type I beta (0.29 and 0.44 microM, respectively), and the two enzymes had similar K alpha values for cAMP (16 and 18 microM, respectively). Types I alpha and I beta exhibited different K alpha values for several cGMP analogs. The abundance of type I beta in specific tissues suggested that it could have an important physiological role.  相似文献   

19.
Unfertilized sea urchin eggs contain a Mg2+-ATPase which shares physical and enzymatic characteristics with dynein, the enzyme which powers ciliary and flagellar movement. To further investigate the homology of the egg ATPase and axonemal dynein, ATP-binding subunits in preparations of each of the enzymes were identified using a photoaffinity probe of ATP, 8-azido-ATP (8-N3ATP), and three high molecular weight (HMW) polypeptide components of the two enzymes were compared by one-dimensional peptide mapping. Two heavy chains (A and B) of both the flagellar and egg ATPases bound [alpha-32P]8-N3ATP. The labeling of the HMW bands was specifically inhibited by ATP or ADP. Both the cytoplasmic ATPase and flagellar dynein utilized 8-N3ATP as a substrate indicating that the reagent binds to the active site. The two HMW ATP-binding polypeptides and one other HMW component of the egg ATPase were compared to flagellar dynein heavy chains by peptide mapping. Digestion of the egg versus flagellar HMW polypeptides with Staphylococcus V8 protease or alpha-chymotrypsin produced a highly similar group of peptides, and each pair of heavy chains was qualitatively estimated to be over 85% homologous. These data support the identification of the egg ATPase heavy chains as components of a cytoplasmic dynein and suggest that the HMW polypeptides form active enzymatic sites in flagellar and egg dynein which are substantially homologous.  相似文献   

20.
Two heavy chains of 21S dynein from sea urchin sperm flagella   总被引:2,自引:0,他引:2  
The biochemical properties of 21S dynein derived from sea urchin sperm flagella and of its components dissociated by low salt treatment were studied. SDS-urea gel electrophoresis and two-dimensional gel electrophoresis showed that the 21S dynein preparation contains two distinct heavy chains. These two heavy chains, termed A alpha and A beta, had apparently the same molecular weight of 500,000 but showed different mobilities on SDS-urea gels. The isoelectric points of A alpha and A beta heavy chains were 5.7 and 5.2, respectively, in the presence of urea. Proteolytic digestion patterns of these two heavy chains were clearly different, but the amino acid compositions were similar. Low salt treatment and sucrose density gradient centrifugation could partially separate the components of 21S dynein into two fractions: the one with larger sedimentation coefficient contained the A alpha heavy chain, and the other with smaller sedimentation coefficient contained the A beta heavy chain and three intermediate chains. These two fractions showed distinctly different kinetic properties, and thus may play different roles in dynein-microtubule interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号