首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the influence of various kinds of glycosaminoglycans (GAGs) in collagen gels on the maintenance of albumin synthesis in primary culture of rat hepatocytes. Among the GAGs examined (heparin, heparan sulfate, keratan sulfate, chondroitin sulfate A, dermatan sulfate, and hyaluronic acid), only heparin-containing collagen gel cultures could significantly sustain albumin synthesis. However, other GAGs, such as heparan sulfate and keratan sulfate, had almost no effect on the maintenance of albumin synthesis. Heparin in collagen gels exhibited a dose-dependent effect on albumin synthesis: heparin at 400 μg/ml-collagen solution maintained albumin synthesis for over 3 weeks. On the other hand, when an equivalent amount of heparin was added directly to the collagen gel culture medium, it prolonged albumin synthesis for only 10 days. The results demonstrate that specific regulation of albumin synthesis by heparin was significantly promoted by coincubating it with collagen, suggesting that some specific interaction between heparin and collagen might be of importance for the maintenance of hepatocyte functions.  相似文献   

2.
3.
A dot blot assay for detection of low amounts of heparin and sulfated glycosaminoglycans (GAGs) is described. The detection range is between 25 ng/ml and 1000 ng/ml of heparin. The assay is based on the interference of sulfated GAGs with the binding of a synthetic ligand (described in this paper) to defined receptors like collagen type V and histones. Ligand binding to type V collagen was suppressed specifically by heparin, but not by other sulfated GAGs like heparin sulfate and chondroitin sulfate. Ligand binding to histones was suppressed most strongly by heparin, but also by chondroitin sulfate. Hyaluronic acid did not interfere.  相似文献   

4.
Glycosaminoglycans (GAGs) are a group of negatively charged molecules present in many tissues as components of the extracellular matrix, basement and cellular membranes. This work analysed the ability of this group of substances to interact with human interferon gamma and the effect of those interactions on its biologic activity. A variety of GAGs (heparin, heparan sulfate, chondroitin sulfate and hyaluronic acid), and a related sulfated polysaccharide (dextran sulfate), were found to interact with IFN-gamma as determined by inhibition of the binding of [125I]IFN-gamma to COLO-205 cells and binding to wells coated with GAGs. These interactions were inhibited by synthetic peptides mimicking the sequences of the basic amino acid cluster located at the C-terminal end of mouse and human IFN-gamma, or by poly-L-lysine, suggesting that ionic interactions between the positively-charged C-terminus and negatively charged groups in GAGs were involved. IFN-gamma molecules bound to plate-immobilized or endothelial cell surface GAGs retained biological activity, since they could induce major histocompatibility complex (MHC) class II expression on COLO-205 cells, suggesting that cell surface GAGs might be able to present IFN-gamma to its receptors. These results suggest important regulatory roles for GAGs on the activity of IFN-gamma in vivo.  相似文献   

5.
Mummery RS  Mulloy B  Rider CC 《Glycobiology》2007,17(10):1094-1103
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.  相似文献   

6.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

7.
Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of [3H]-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo.  相似文献   

8.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

9.
In investigating the role of cell-extracellular matrix interactions in cell adhesion and growth control, the effects of heparin on cell-collagen interactions were examined. Exponentially growing Balb/c-3T3 fibroblasts were radiolabelled with 3H-thymidine and detached from tissue culture surfaces using EDTA, and cell attachment to various types of collagen substrata was assayed in the presence or absence of heparin or other glycosaminoglycans (GAGs) or dextran sulfate (40 K). Cells attached readily (70-90%) to films of types I and V, but not to type III collagen. The number of cells bound to types I and V collagen films was inhibited by 10-50% when heparin was present from 0.1-100 micrograms/ml. Cell-collagen attachment was also inhibited by dextran sulfate, and to a lesser extent by dermatan sulfate, but chondroitin sulfates A and C and hyaluronic acid showed no effect. Heparin was active even at early time points in the adhesion assay, suggesting it may disrupt cell-collagen attachment. To study the effects of heparin in modulating cell growth on collagen, growth arrested cells cultured on type I collagen films were serum stimulated in the presence of heparin or other GAGs for 3 days. Growth was inhibited (greater than 40%) only by heparin and dextran sulfate. Interaction of heparin fragments (Mr less than or equal to 6KD) with type I collagen was analyzed by affinity co-electrophoresis (Lee and Lander, 1991) and showed higher affinity heparin binding to native as compared with denatured collagen. These data suggest that sites within native collagen may mediate Balb cell-collagen and heparin-collagen interactions, and such interactions may be relevant towards understanding heparin's antiproliferative activity in vivo and in vitro.  相似文献   

10.
Heparin is a sulfated glycosaminoglycan (GAG), which contains N-acetylated or N-sulfated glucosamine (GlcN). Heparin, which is generally obtained from the healthy porcine intestines, is widely used as an anticoagulant during dialysis and treatments of thrombosis such as disseminated intravascular coagulation. Dermatan sulfate (DS) and chondroitin sulfate (CS), which are galactosamine (GalN)-containing GAGs, are major process-related impurities of heparin products. The varying DS and CS contents between heparin products can be responsible for the different anticoagulant activities of heparin. Therefore, a test to determine the concentrations of GalN-containing GAG is essential to ensure the quality and safety of heparin products. In this study, we developed a method for determination of relative content of GalN from GalN-containing GAG in heparin active pharmaceutical ingredients (APIs). The method validation and collaborative study with heparin manufacturers and suppliers showed that our method has enough specificity, sensitivity, linearity, repeatability, reproducibility, and recovery as the limiting test for GalN from GalN-containing GAGs. We believe that our method will be useful for ensuring quality, efficacy, and safety of pharmaceutical heparins. On July 30, 2010, the GalN limiting test based on our method was adopted in the heparin sodium monograph in the Japanese Pharmacopoeia.  相似文献   

11.
The effect of various sulfated glycosaminoglycans on glycoconjugates syntheses in synovial membranes of rabbit knee joints in culture was investigated by two different approaches. In the first approach, synovial membranes isolated from rabbit knee joints were cultured in the presence of sulfated glycosaminoglycans and [14C]glucosamine. In the second approach, solutions of sulfated glycosaminoglycans were injected into rabbit knee joints and synovial membranes isolated from the joints were cultured in the presence of [14C]glucosamine. The major part of [14C]glucosamine-labeled glycoconjugates associated with the synovial membranes and secreted into culture medium was hyaluronic acid. Of the natural glycosaminoglycans tested, dermatan sulfate gave the maximum stimulation of hyaluronic acid synthesis followed by chondroitin 4- and 6-sulfate. Heparin, heparan sulfate, keratan sulfate, keratan polysulfate, and hyaluronic acid had no significant effect. Of the chemically polysulfated glycosaminoglycans, GAGPS (a persulfated derivative of chondroitin sulfate) gave high stimulation but N-acetylchitosan 3,6-disulfate had no effect. The effect of sulfated glycosaminoglycans on hyaluronic acid synthesis was the same in both experimental approaches. The increase in the amount of secreted hyaluronic acid in culture medium paralleled that in synovial membranes. The results indicate that the galactosamine-containing sulfated glycosaminoglycans have a specific stimulatory effect on hyaluronic acid synthesis. A high degree of sulfation of the molecules appeared to potentiate the stimulatory effect.  相似文献   

12.
Plasma membranes prepared from mouse liver have been previously shown to contain growth stimulatory activity as determined with cultured mouse fibroblasts. This growth stimulatory activity, termed plasma membrane-associated growth stimulatory activity (PMGA), is highly mitogenic in the presence of platelet-poor plasma. We now demonstrate that the growth stimulatory action of PMGA is dramatically enhanced by the addition of heparin. The half-maximal effect of heparin was observed at 1-3 micrograms/ml. The synergistic effect was seen in two distinct assays; the stimulation of DNA synthesis in quiescent cells, and an increase of cell number over a 3-day culture period. Heparin, by itself, does not have any measurable influence on the growth of fibroblasts. The action of heparin is not unique to this glycosaminoglycan, as several other highly sulfated polysaccharides, including dextran sulfate, pentosan polysulfate, and fucoidan, also exhibited the highly synergistic effect. Among other glycosaminoglycans examined, chondroitin sulfate B and heparan sulfate had a small, but significant, effect on enhancing the growth stimulatory action of PMGA. Chondroitin sulfate A, chondroitin sulfate C, hyaluronic acid dextran, and poly-L-glutamic acid, however, had no detectable effect. Further experiments suggested that the effect of heparin is twofold, namely, both a potentiation of growth stimulatory activity and a protection of PMGA activity. The data presented here suggest that the association of various cell surface components, such as PMGA and specific proteoglycans, can modulate the growth potential of a cell.  相似文献   

13.
The glycosaminoglycans (GAGs) hyaluronic acid and heparin were added (10 micrograms and 100 micrograms/ml to golden hamster sperm suspensions previously incubated for 4.5 h under capacitating conditions. After additions, sperm were incubated for 5-15 min and acrosome reactions (AR) assayed in motile sperm by phase contrast microscopy. Hyaluronic acid and heparin significantly stimulated AR over control levels. Hyaluronic acid did not stimulate AR 15 min after addition to sperm previously incubated for only 2.5 h. Pre-incubation of hyaluronic acid with streptomyces hyaluronidase destroyed the ability of that GAG to stimulate the AR. These results indicate that GAGs (at least one of which, hyaluronic acid, is present in the oocyte cumulus oophorous) can rapidly stimulate the acrosome reaction in motile previously capacitated hamster sperm.  相似文献   

14.
Endothelin-1 (ET-1) is the most potent vasoconstrictor peptide found in nature. Its production is stimulated by thrombin. By inhibiting thrombin we have previously shown that heparin, a highly negatively-charged glycosaminoglycan (GAG), suppresses the production of ET-1 by cultured human umbilical vein endothelial cells (HUVEC). The purpose of our study is to determine the effect of other GAGs and related compounds on ET-1 production. The GAGs and related compounds used in the study were: chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, fucoidin, low molecular weight dextran sulfate, high molecular weight dextran sulfate, and hyaluronan. HUVEC were incubated for 48 hr with media containing these GAGs and related compounds and with media without GAG as control. ET-1 levels were measured by radioimmunoassay. GAGs and related molecules with higher sulfate content, heparin, chondroitin sulfate B, low and high molecular weight dextran sulfates significantly suppressed ET-1 production by HUVEC. Fucoidin also suppressed ET-1 production despite its lower sulfate content, probably because of its structural similarity to heparin. These compounds may be useful for future in vivo studies.  相似文献   

15.
Bikunin is a small chondroitin sulfate proteoglycan that occurs in blood as the light chain of inter--trypsin inhibitor (ITI) family members. The relatively short chondroitin sulfate chain of bikunin shows a characteristic pattern of sulfation in both the linkage region and the chondroitin sulfate backbone. To the internal N-acetylgalactosamines in the lower sulfated portion near the non-reducing end, up to two side proteins could bind covalently via a unique ester bond to form core protein-glycosaminoglycan-side protein complexes, the ITI family. ITI molecules are synthesized in hepatocytes, and then secreted into circulation at high concentrations. In the presence of yet unidentified factors, the side proteins are transferred from chondroitin sulfate to hyaluronan by a transesterification reaction to form what has been described as the Serum-derived Hyaluronan-Associated Protein (SHAP)-hyaluronan complex. The formation of this complex is required for the stabilization of the extracellular matrix of fibroblasts, mesothelial cells, and cumuli oophori. When the gene for bikunin is inactivated, female mice exhibit severe infertility as a consequence of a defect of the side protein precursor in forming a complex with the hyaluronan in cumulus oophorus before ovulation. Therefore, the chondroitin sulfate moiety of bikunin is essential for presenting SHAP to hyaluronan, which is indispensable for ovulation and fertilization in mammals. Published in 2003.  相似文献   

16.
During organ differentiation, cell-extracellular matrix (ECM) interactions are required. The components of the ECM, such as glycosaminoglycans, fibronectin, laminin, and collagens, change in relation to cytokine and enzyme activity. Moreover, glycosaminoglycans (GAGs) are components of the ECM that play an important role in both cytokine regulation and cell activities. In this work we studied the accumulation of hyaluronic acid and chondroitin sulfate and heparan sulfate proteoglycans (PGs), beta-N-acetyl-D-glucosaminidase activity, the presence of transforming growth factor beta(2) (TGF beta(2)), and interleukin-1 (IL-1), and the localization of fibronectin, laminin, and collagen I and IV during the early stages of chick embryo lung development. We also determined the levels of hyaluronic acid, chondroitin sulfate, dermatan sulfate, and heparan sulfate GAGs and the activity of beta-N-acetyl-D-glucosaminidase with biochemical methods. Our data show that beta-N-acetyl-D-glucosaminidase activity increases in each cell, especially in the epithelial growth front at the emergence of each bronchial bud, where hyaluronic acid and IL-1 are located in the surrounding mesenchymal areas. Chondroitin sulfate and heparan sulfate PGs, fibronectin, laminin, and collagen I and IV are evident in the area near the basal membrane along the sides where the forming structures are stabilized. Biochemical data show that beta-N-acetyl-D-glucosaminidase activity increases in cells during lung development and is related to GAG decrease and to modifications of the nonsulfated/sulfated GAG ratio. These modifications could change cytokine activity and play an important role in bronchial branching development.  相似文献   

17.
Volpi N  Maccari F 《Biomacromolecules》2005,6(6):3174-3180
In this paper, glycosaminoglycans from the body of the large freshwater mollusc bivalve Anodonta anodonta were recovered at about 0.6 mg/g of dry tissue, composed of chondroitin sulfate (approximately 38%), nonsulfated chondroitin (about 21%), and heparin (41%). This last polysaccharide was found to consist of a large percentage (approximately 88%) of a fast-moving species possessing a lower molecular mass and sulfate group amount and about 12% of a more sulfated, slow-moving component having a greater molecular mass. The chondroitin sulfate was composed of approximately 28% of the 6-sulfated disaccharide, 46% of the 4-sulfated disaccharide, and about 26% of the nonsulfated disaccharide, with a charge density value of 0.74. Heparin was subjected to the oligosaccharide mapping after treatment with heparinase and then separation of the resulting unsaturated oligosaccharides by SAX-HPLC. A heparin sample from Anodonta anodonta showed a degree of sulfation similar to that of bovine mucosal heparin because of the presence of approximately the same mol % of the trisulfated disaccharide (DeltaUA2S(1-->4)-alpha-D-GlcN2S6S), a slight modification of the other oligosaccharides, and a significant increase of the disaccharide bearing the sulfate group in position 3 of the N-sulfoglucosamine 6-sulfate (-->4)-beta-D-GlcA(1-->4)-alpha-D-GlcN2S3S6S(1-->) part of the ATIII-binding region. However, the anticoagulant activity of mollusc heparin was quite similar to that of pharmaceutical grade heparin. The data obtained again emphasize the heterogeneity of GAGs from molluscs.  相似文献   

18.
Heparin was divided into four fractions on fibronectin-Sepharose. The higher affinity fraction for fibronectin was larger in molecular size, higher in sulfate content and higher in affinity for anti-thrombin III. Together with these heparin fractions, the following three series of heparin samples were examined to compare the affinity for fibronectin-Sepharose: four fractions separated on Sephadex G-100; five fractions separated on antithrombin III-Sepharose, and six partially and completely N-desulfated heparins. The result showed that the affinity of heparin for fibronectin was dependent exclusively on its molecular size, and that an appropriate level of sulfate content in heparin (1.9-2.4 mol/disaccharide) was essential for the affinity. The sulfated preparations of glycosaminoglycans (heparan sulfate, dermatan sulfate and chondroitin 4-sulfate) and neutral polysaccharides (amylose and dextran) having higher sulfate content than heparin were found to display higher affinity for fibronectin than heparin. This suggested that highly sulfated polysaccharides showed potent affinity irrespective of their polysaccharide structure. The sulfated chondroitin 4-sulfate having a sulfate content and molecular size comparable to those of heparin was inferior to heparin with respect to affinity. A competitive dissociation experiment indicated that heparin and other polysulfated polysaccharides share a common binding site on the fibronectin molecule.  相似文献   

19.
Basic fibroblast growth factor (FGF-2) and its respective tyrosine kinase receptors, form an autocrine loop that affects human melanoma growth and metastasis. The aim of the present study was to examine the possible participation of various glycosaminoglycans, i.e. chondroitin sulfate, dermatan sulfate and heparin on basal and FGF-2-induced growth of WM9 and M5 human metastatic melanoma cells. Exogenous glycosaminoglycans mildly inhibited WM9 cell's proliferation, which was abolished by FGF-2. Treatment with the specific inhibitor of the glycosaminoglycan sulfation, sodium chlorate, demonstrated that endogenous glycosaminoglycan/proteoglycan production is required for both basal and stimulated by FGF-2 proliferation of these cells. Heparin capably restored their growth, and unexpectedly exogenous chondroitin sulfate to WM9 and both chondroitin sulfate and dermatan sulfate to M5 cells allowed FGF-2 mitogenic stimulation. Furthermore, in WM9 cells the degradation of membrane-bound chondroitin/dermatan sulfate stimulates basal growth and even enhances FGF-2 stimulation. The specific tyrosine kinase inhibitor, genistein completely blocked the effects of FGF-2 and glycosaminoglycans on melanoma proliferation whereas the use of the neutralizing antibody for FGF-2 showed that the mitogenic effect of chondroitin sulfate involves the interaction of FGF-2 with its receptors. Both the amounts of chondroitin/dermatan/heparan sulfate and their sulfation levels differed between the cell lines and were distinctly modulated by FGF-2. In this study, we show that chondroitin/dermatan sulfate-containing proteoglycans, likely in cooperation with heparan sulfate, participate in metastatic melanoma cell FGF-2-induced mitogenic response, which represents a novel finding and establishes the central role of sulfated glycosaminoglycans on melanoma growth.  相似文献   

20.
糖胺聚糖是一类直链酸性多糖,具有优良的生物相容性和生理活性,被广泛应用于临床治疗,并用作药物运输载体,其中透明质酸、 肝素和硫酸软骨素的相关研究最为深入。由于传统方式(如动物组织提取法等)制备糖胺聚糖,存在外毒素、病毒等致病因子污染的风 险,因而,利用合成生物学技术,构建重组工程菌株生产糖胺聚糖,逐渐受到研究者们的重视。主要围绕透明质酸、肝素前体及软骨素, 综述糖胺聚糖的生物合成途径,并探讨产糖胺聚糖基因工程菌的构建以及糖胺聚糖生物合成过程中分子质量调控机制,以期为构建产高 品质糖胺聚糖工程菌株提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号