首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A model for a main element of the active site of skeletal muscle myosin is presented that relates directly to the 92 amino acid fragment (p10) of myosin recently described by Elzinga &; Collins (1977). In this model, the substrate, an eight-membered cyclic complex of MgATP, fits tightly into a 16 amino acid segment of p10 and interacts with seven of its amino acids. A main feature of the model is the important role played by the one molecule of Nτ-methylhistidine2 that is present in each myosin heavy chain. At the site, it is postulated that this rare amino acid functions as a donor ligand to Mg2+. Once Nτ-methylhistidine is put in place next to the metal, the other amino acids that appear to form a pocket come easily into position around the MgATP. These amino acids with their postulated functions are: tyrosine 72, which through a Mg-bound water, or perhaps directly, is attached to the Mg; histidine 76, which donates a proton to the Pγ of ATP; lysine 78, which binds electrostatically to Pβ of ATP; phenylalanines 80 and 81, which flank the purine ring of ATP; and aspartate 66, which forms a hydrogen bond to the 6-amino group of adenine. The Mg-coordination role ascribed to Nτ-methylhistidine 69 in skeletal muscle myosin could be taken by histidine 69 in cardiac myosin and in other muscle myosins that do not contain the methylated amino acid.The choice of p10 to contain a main element of the active site is based on: (a) the presence in p10 of the essential sulfhydryl groups, SH1 and SH2, whose modification affects the ATPase activity of myosin; (b) the presence in ρ10 of Nτ-methylhistidine, an unusual amino acid whose methylation in skeletal muscle we take as an indicator for a special function at the active site; (c) the position of p10 in the primary structure near the junction between subfragment 1 and subfragment 2 (the hinge region) where, we postulate, enzymatic events at the active site are coupled to movements of the hinge that occur during contraction; (d) indications that the DTNB light chain, probably involved in regulation, is also near the hinge; (e) the effects of MgATP at the active site on the chemical reactivity of three SH groups (SH1, SH2 and SH3) located near the hinge; and (f) the effect of hinge cleavage on the oxygen exchange reaction catalyzed at the active site. The correlation of all these observations forms the basis for our placement of part of the active site on p10 near the subfragment 1-subfragment 2 hinge.  相似文献   

2.
3.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

4.
Heavy meromyosin subfragment-1 from human platelets and chicken gizzard exhibited an identical chromatographic pattern on agarose-ATP columns both in the absence and in the presence of Ca2+ and Mg2+. In the presence of Ca2+, the behavior differed from that of rabbit white skeletal muscle subfragment-1. The reaction of lysyl residues of platelet myosin with 2,4,6-trinitrobenzene sulfonate did not affect the K+- or Mg2+-stimulated ATPase activity. A similar behavior was exhibited by chicken gizzard myosin whereas trinitrophenylation of the more active lysyl residues in skeletal muscle myosin caused a marked increase in Mg2+-stimulated and a decrease in K+-stimulated ATPase activity. These features may point to a similar location of the essential lysyl residue in platelet and smooth muscle myosin, which is different from that of skeletal muscle. Alkylation of thiol groups by N-ethyl maleimide in the absence of added nucleotides resulted in a loss of K+-ATPase and in an increase in the Ca2+-ATPase in all three myosins, the increase for the skeletal myosin being much greater than for the platelet and chicken gizzard preparations. Alkylation of myosin in the presence of MgADP led to a decrease in K+-ATPase of all preparations whereas the Ca2+-ATPase as a function of time exhibited a maximum for the platelet and skeletal muscle proteins. These features may point to a certain similarity with respect to the active site of platelet and smooth muscle myosins and a difference between these and skeletal muscle myosin.  相似文献   

5.
6.
7.
Stereochemical mapping of the active site of glutamine synthetase   总被引:1,自引:0,他引:1  
  相似文献   

8.
The photosensitized oxidation of alkaline mesentericopeptidase in the presence of methylene blue results in a first-order rate of inactivation. The loss of enzymatic activity towards casein and N-acetyl-L-tyrosine ethyl ester closely correlates with the destruction of one histidyl residue. A pK value of 6.8 is determined from the sigmoid pH-dependence of the photoinactivation rate. This suggests the involvement of a normal titrating imidazole group in the active site of mesentericopeptidase. The competitive inhibitor Na-benzoyl-L-arginine protects the enzyme from photoinactivation. A conclusion is made that the active site histidyl residue is modified. Circular dichroism spectra show no change in the protein conformation during the photodynamic treatment.  相似文献   

9.
Amino acid sequence of the active site of Acanthamoeba myosin II   总被引:3,自引:0,他引:3  
We have used the substrate [5,6-3H]UTP for direct photoaffinity labeling of the active site of the heavy chain of myosin II from Acanthamoeba castellanii. The only labeled peptide in a total tryptic digest had the sequence of Thr-Glu-Asn-Thr-Me2Lys-Lys (where Me2Lys represents dimethyllysine) with the substrate covalently bound to the Glu residue. This sequence differs at only one position from the sequence of residues 184-189 of nematode myosin heavy chain (Me2Lys----Lys), a post-translational modification, and at two additional positions from residues 185-190 of rabbit skeletal muscle myosin (Glu----Val and Lys----Arg). The partial sequence of a larger labeled peptide derived from total chymotryptic digestion was compatible with and extended this sequence. A 20-residue sequence that contains the active site, tryptic hexapeptide is otherwise identical in Acanthamoeba and rabbit skeletal muscle myosins and has only one more difference in nematode myosin. Because UTP is a substrate for myosin II and a "zero-length" probe, we believe that it identifies amino acid residues that are very close to the substrate during the catalytic cycle.  相似文献   

10.
The addition of ATP or PPi retarded conspicuously the rate of specific binding of trinitrobenzenesulfonate to one mole of lysine residue in 2.1·105 g of myosin A. The rate of specific binding of trinitrobenzenesulfonate to myosin A was increased in 4M LiBr which melts almost completely the helical structure of myosin A. The rate was also remarkably influenced by the treatment of myosin A with 1.5 M LiBr which inactivated ATPase (ATP phosphohydrolase, EC 3.6.1.3) without changing significantly the helical content of the myosin A molecule as a whole. Furthermore, it was demonstrated that actomyosin reconstituted from myosin A treated with p-chloromercuribenzoate and β-mercaptoethanol does not show a clearing response on addition of high concentrations of ATP and its ATPase activity is not inhibited by the substrate or by EDTA. The p-chloromercuribenzotae added was completely removed from myosin A by the further addition of excess β-mercaptoethanol and the optical rotatory dispersion of myosin A was insignificantly altered by the treatment with p-chloromercuribenzoate and β-mercaptoethanol.  相似文献   

11.
12.
13.
3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP containing a photoreactive benzophenone moiety, was used as a probe of the ATP binding site of myosin subfragment 1 (SF1). The inactivation of SF1 NH+4-EDTA ATPase by the bifunctional thiol crosslinking system cobalt(II)/cobalt(III) phenanthroline complexes was enhanced by Bz2ATP to the same degree as by ATP. This treatment resulted in the stable trapping of Bz2ATP at the active site in nearly stoichiometric amounts in a manner exactly analogous to ATP (Wells, J.A., and Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970). Irradiation of SF1 containing trapped [3H]Bz2ATP gave approximately 50% covalent incorporation of the trapped nucleotide into the enzyme. Analysis of photolabeled SF1 by gel electrophoresis showed that all of the [3H]Bz2ATP was attached to the 95-kDa heavy chain fragment. No label was found in the light chains. Similar analysis of the same protein after limited trypsin treatment demonstrated that approximately 75% of the [3H]Bz2ATP was bound to the central 50-kDa peptide and its 75-kDa precursor from the heavy chain. The N-terminal 25-kDa tryptic peptide, shown to be photolabeled by other ATP analogs (Szilagyi, L., Balint, M., Sreter, F.A., and Gergely, J. (1979) Biochem. Biophys. Res. Commun. 87, 936-945; Okamoto, Y., and Yount, R.G. (1983) Biophys. J. 41, 298a), was not labeled (less than 1%) by Bz2ATP. These results demonstrate that portions of the 50 kDa-peptide of the heavy chain are within 6-7 A of the ATP binding site on SF1 and possibly contribute to nucleotide binding.  相似文献   

14.
15.
We previously proposed a molecular mechanism for the activation of smooth muscle myosin light chain kinase (smMLCK) by calmodulin (CaM). According to this model, smMLCK is autoinhibited in the absence of Ca2+/CaM due to the interaction of a pseudosubstrate prototope, contained within the CaM binding/regulatory region, with the active site of the enzyme. Binding of Ca2+/CaM releases the autoinhibition and allows access of the protein substrate to the active site of the enzyme, resulting in phosphorylation of the myosin light chains. We now provide direct experimental evidence that the pseudosubstrate prototope can associate with the active site. We constructed a smMLCK mutant in which the five-amino acid phosphorylation site of the myosin light chain substrate was inserted into the pseudosubstrate sequence of the CaM binding domain without disrupting the ability of the enzyme to bind Ca2+/CaM. We demonstrate that this mutant undergoes intramolecular autophosphorylation at the appropriate inserted serine residue in the absence of CaM and that this autophosphorylation activates the enzyme. Binding of Ca2+/CaM to the mutant enzyme stimulated myosin light chain substrate phosphorylation but strongly inhibited autophosphorylation, presumably by removing the pseudosubstrate from the active site. These results confirm that the pseudosubstrate sequence has access to the catalytic site and that the activation of the enzyme is accompanied by its removal from this position due to Ca2+/CaM binding as predicted by the model.  相似文献   

16.
Acanthamoeba myosin II is regulated in an unique way by phosphorylation of three serine residues located within nonhelical tailpiece of the rod domain. Phosphorylation inhibits functions associated with the NH2-terminal motor domain, i.e., actin-activated activity and ability to move actin filaments. Number of data indicate functional communication between these distant domains. In this work, effect of modification of arginine residues with phenylglyoxal on the Ca2+-ATPase activity and susceptibility to endoproteinase ArgC cleavage of monomeric phospho- and dephosphomyosin II has been investigated. Upon the phenylglyoxal treatment the activity of dephosphomyosin II was decreasing faster that the activity of phosphomyosin. The modification also affected the proteolytic fragmentation of phospho- and dephosphomyosin II: the cleavage of heavy chain was further inhibited for phosphomyosin and enhanced for dephosphomyosin with a concomitant exposure of an additional cleavage site within the head domain. No difference in the quantity of modified arginines was observed. These results indicate a difference between the conformation of active sites of phospho- and dephosphomyosin II.  相似文献   

17.
The role of arginine residues in the catalytic activity of cardiac myosin subfragment-1 (S-1) was investigated by selective modification with phenylglyoxal. Incorporation of about 2.8 mol of phenylglyoxal/mol of S-1 decreased Ca2+-ATPase activity about 50%. Gelation of the protein occurred at about 70% inactivation; however, extrapolation to complete inactivation indicated that loss of activity correlated with modification of about 4 arginyls/mol. Partial inactivation of S-1 with phenylglyoxal also decreased MgADP binding markedly. When S-1 was modified in the presence of 5 mM MgADP, only 2 arginyls/mol were blocked and there was almost complete protection against loss of Ca2+-ATPase activity and ability to bind MgADP. Similar protection against inactivation by phenylglyoxal was obtained with MgATP or sodium pyrophosphate, but not with MgAMP or magnesium adenosine. These results suggest that 2 arginyls/myosin head are important for enzymatic activity, possibly serving as attachment points between enzyme and substrate. These essential arginyls were localized to a 17,000-dalton cyanogen bromide peptide from the heavy chain fragment of S-1.  相似文献   

18.
Agrin is a basal lamina protein that induces aggregation of acetylcholine receptors (AChRs) and other molecules at the developing neuromuscular junction. Alternative splicing of chick agrin mRNA at two sites, A and B, gives rise to eight possible isoforms of which five are expressed in vivo. Motor neurons express high levels of isoforms with inserts at sites A and B, muscle cells synthesize isoforms that lack amino acids at the B-site. To obtain further insights into the mechanism of agrin-induced AChR aggregation, we have determined the EC50 (effective concentration to induce half-maximal AChR clustering) of each agrin isoform and of truncation mutants. On chick myotubes, EC50 of the COOH-terminal, 95-kD fragment of agrinA4B8 was approximately 35 pM, of agrinA4B19 approximately 110 pM and of agrinA4B11 approximately 5 nM. While some AChR clusters were observed with 64 nM of agrinA4B0, no activity was detected for agrinA0B0. Recombinant full-length chick agrin and a 100-kD fragment of ray agrin showed similar EC50 values. A 45-kD, COOH-terminal fragment of agrinA4B8 retained high activity (EC50 approximately equal to 130 pM) and a 21-kD fragment was still active, but required higher concentrations (EC50 approximately equal to 13 nM). Unlike the 45-kD fragment, the 21-kD fragment neither bound to heparin nor did heparin inhibit its capability to induce AChR aggregation. These data show quantitatively that agrinA4B8 and agrinA4B19, expressed in motor neurons, are most active, while no activity is detected in agrinA0B0, the dominant isoform synthesized by muscle cells. Furthermore, our results show that a fragment comprising site B8 and the most COOH- terminal G-like domain is sufficient for this activity, and that agrin domains required for binding to heparin and those for AChR aggregation are distinct from each other.  相似文献   

19.
20.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号