首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Menopause marks the start of a new phase in a woman's life that is associated with a decrease in circulating estrogen levels. Although the average age of women has increased from 50 to nearly 85 years, the average age at menopause has remained essentially constant at 50 years. Thus, women now spend nearly a third of their lives in an estrogen deficient state. This normal aging process in women is associated with increasing health problems such as osteoporosis, cardiovascular disease, neurodegenerative diseases, and cancer. Estrogen replacement therapy (ERT) has been shown to play an important beneficial role in the health and well being of postmenopausal women. Several estrogen preparations are available and among these conjugated equine estrogens (CEE) are most frequently used. The drug CEE, is a complex natural urinary extract of pregnant mare's urine and contains at least 10 estrogens in their sulfate ester form and these are the ring B saturated estrogens: estrone (E(1)), 17beta-estradiol (17beta-E(2)), 17alpha-estradiol (17alpha-E(2)), and the ring B unsaturated estrogens equilin (Eq), 17beta-dihydroequilin (17beta-Eq), 17alpha-dihydroequilin (17alpha-Eq), equilenin (Eqn), 17beta-dihydroequilenin (17beta-Eqn), 17alpha-dihydroequilenin (17alpha-Eqn), and Delta(8)-estrone (Delta(8)-E(1)). All of these estrogens in their unconjugated form are biologically active and can interact with recombinant human estrogen receptor alpha (ERalpha) and beta (ERbeta) with 17beta-estradiol and 17beta-dihydroequilin having the highest affinity for both receptors. A number of the ring B unsaturated estrogens had nearly twofold higher affinity for the ERbeta. The pharmacokinetics of these estrogens in postmenopausal women indicate that the unconjugated estrogens compared to their sulfated forms are cleared more rapidly. The 17-keto estrogens are metabolized to the more potent 17beta-reduced products which are cleared at a slower rate. In postmenopausal women, the extent of 17beta-activation is much higher with the ring B unsaturated estrogens than with ring B saturated estrogens. Oxidized LDL and oxidative stress are thought to contribute to both atherosclerosis and neurodegenerative disorders. Neurons in particular are at a high risk from damage resulting from oxidative stress. In vivo and in vitro studies indicate that the oxidation of LDL isolated from postmenopausal women was inhibited differently by various estrogens and other antioxidants. The unique ring B unsaturated estrogens were the most potent while the red wine component t-resveratrol was the least potent.Studies were designed to explore the cellular and molecular mechanisms that may be involved in the neuroprotective effects of CEE components. The data indicate that the neurotoxic effects of oxidized LDL and glutamate can be inhibited by various estrogens, with the ring B unsaturated estrogens being the most active. These effects are involved in the inhibition of DNA fragmentation and up-regulation of anti-apoptotic protein Bcl-2 and down-regulation of pro-apoptotic protein Bax. These combined data suggest that some of the neuroprotective benefits associated with long-term estrogen therapy may occur by the above mechanism(s). Because estrogens such as the Delta(8)-estrogens are relatively less feminizing than the classical estrogen 17beta-estradiol, they may be important in the development of more neuro-specific estrogens that will be useful in the prevention of neurodegenerative diseases, such as Alzheimer's and Parkinson disease, in both men and women.  相似文献   

2.
Relative mitogenic activities of various estrogens and antiestrogens   总被引:1,自引:0,他引:1  
G Stack  K Korach  J Gorski 《Steroids》1989,54(2):227-243
The abilities of a variety of estrogens and antiestrogens to stimulate DNA synthesis in the prepuberal rat uterus were compared. One microgram of each compound was administered in vivo via a single intraperitoneal injection. DNA synthesis was assayed in vitro in isolated nuclei 24 h later. The relative mitogenicities of the steroidal estrogens were: 16 alpha-E2 less than 17 alpha-E2 = E3 = 16-EpiE3 less than 16 beta-E2 = 17 beta-E2. The potencies of several nonsteroidal estrogens were also tested. Indenestrol A was as potent at 17 beta-E2, whereas indanestrol and dimethylstilbestrol had weaker activities. The antiestrogens, nafoxidine and 4-hydroxytamoxifen, were both potent stimulators of DNA synthesis. The abilities of an estrogen to stimulate increases in uterine wet weight, DNA polymerase alpha activities, and DNA synthesis in uterine nuclei 24 h after injection were closely correlated. Because the magnitude of the stimulation of DNA synthesis was greatest, its measurement is the most sensitive of these assays of uterotrophic activity.  相似文献   

3.
The uterine vasculature plays an important role during pregnancy by providing adequate perfusion of the maternal-fetal interface. To this end, substantial remodeling of the uterine vasculature occurs with consequent changes in responsiveness to contractile agents. The purpose of our study was to characterize the vasorelaxant effects of estrogens on vascular smooth muscles of the rat uterine artery during pregnancy and to evaluate the involvement of estrogen receptors (ESR) and nitric oxide synthases (NOS). To do so, we measured NOS expression in the whole uterine and mesenteric circulatory bed by Western blotting. Vasorelaxant effects of 17beta-estradiol (17beta-E(2)) were assessed on endothelium-denuded uterine arteries with wire myographs in the absence and presence of pharmacological modulators [nitro-L-arginine methyl ester (L-NAME), ICI-182780, tamoxifen]. All experiments were performed on arteries from nonpregnant (NP) and late pregnant (P) rats. In the uterine vasculature of the latter group, NOS3 (endothelial NOS) expression was increased, while NOS1 (neuronal NOS) was reduced compared with NP rats. Expression of the NOS2 (inducible NOS) isoform was undetectable in the two groups. Both 17beta-E(2) and 17alpha-E(2) induced uterine artery relaxation, but the latter evoked lower responses. Endothelium-denuded arteries from NP rats showed larger relaxation with 17beta-E(2) than P rats. This larger relaxation disappeared in the presence of L-NAME. The ESR antagonist ICI-182780 did not affect acute relaxation with 17beta-E(2) and 17alpha-E(2). Moreover, membrane-nonpermeant 17beta-E(2):BSA (estradiol conjugated to bovine serum albumin) did not induce any vasorelaxation. Our results indicate that estrogens exert direct acute vasorelaxant effects in smooth muscles of the rat uterine artery that are mediated by mechanisms independent of ESR activation, but with some stereospecificity. Part of this effect, in NP rats only, is due to nitric oxide produced from muscle NOS1.  相似文献   

4.
The steroid and the DNA bindings of the estrogen receptor of the MtTF4 tumor whose growth is inhibited by estradiol where characterized and compared to those of uterine estrogen receptors. In the tumor cytosol: E protects its binding sites against thermal denaturation, depending on the effects of sodium molybdate upon the dissociation rate of [3H]E at 20 degrees C and the ability of receptor to bind to DNA, the activation (or transformation) process, supposed to be necessary for the full action of estrogen ligand, occurs on estrogen receptor complexes and the calf thymus DNA interacts with estrogen receptor with an affinity similar to that of uterine estrogen receptor. Kinetic and equilibrium studies with 17 alpha-[3H]E both in uterus and tumor indicate that this ligand is fast-associating, fast-dissociating and that its affinity for ER is 2- to 4-fold lower than that of 17 beta-[3H]estradiol one. Competition experiments between 17 beta-[3H]estradiol and the unlabelled 17 alpha epimer reveal, in both uterus and tumor, a time-dependent decrease of the apparent potency of 17 alpha-E to inhibit the binding of [3H]E. It is concluded that the estrogen receptors are very similar in MtTF4 tumor and uterus and the diversity of the response of cell growth to E is due rather to differences at the post-receptor level.  相似文献   

5.
1. Specific [3H]estradiol binding activity with characteristics of estrogen receptors was found in the cytosols and nuclear extracts of the adrenal cortex proper and special zone of the brushtail possum (Trichosurus vulpecula). 2. The specific estradiol receptor had a sedimentation coefficient on sucrose gradients of approximately 9S and a molecular weight on gel filtration of more than 200,000. The adrenal cortex cytosol binds [3H]estradiol with high affinity (Ka 5.5 X 10(9) M-1), and limited capacity (Bmax 62.7 fmol/mg cytosol prot). In competition experiments with different steroids the receptor showed a high affinity for four estrogens and a very low affinity to androgens, progesterone and cortisol. 3. There was no difference in the affinity and maximum binding capacity of the cytosols from cortex proper in male and female animals, but the binding capacity of the special zone of females was half that of cortex proper. Estradiol receptors were found in the kidney, liver, lung, testis and muscle but only in the adrenal and prostate was the binding capacity relatively high compared with the uterus. 4. The specific binding capacity of [3H]estradiol to cytosols of adrenal cortex at different stages of the estrus cycle and pregnancy was unrelated to that of the uterus. In the adrenal the receptor concentration was lowest at estrus, when uterine concentration was high, while in late pregnancy the binding of adrenal cortex and uterus cytosols was almost the same. 5. The possible physiological significance of the presence of a specific estrogen receptor in male and female possums is discussed.  相似文献   

6.
The binding of catechol estrogens, epoxyenones and methoxyestrogens was evaluated using estrogen receptors in cytosol prepared from human breast cancers. The relative affinity of 2-hydroxyestradiol, a metabolite formed in vitro from estradiol-17 beta by breast cancer cells, was indistinguishable from that of estradiol-17 beta. 4-Hydroxyestradiol, which is also a metabolite of estradiol-17 beta, associated with the estrogen receptor with a relative affinity approximately 1.5-fold greater than that of estradiol-17 beta. Epoxyenones and methoxyestrogens were weak competitors compared to the binding of estradiol-17 beta, exhibiting relative affinities 3% or less than the affinity of estradiol-17 beta. Sucrose density gradient centrifugation revealed that both 2- and 4-hydroxyestradiol inhibited the binding of estradiol-17 beta to both the 4S and 8S isoforms of the estrogen receptor in a competitive manner, with a Ki = 0.94 nM for 2-hydroxyestradiol and a Ki = 0.48 nM for 4-hydroxyestradiol. It can be concluded that these data demonstrate a specific receptor-mediated estrogenic action for both of these catechol estrogens.  相似文献   

7.
A new benzothiophene derived antiestrogen, LY139481, inhibited the uterotropic action of estradiol in a dose related fashion, and at 1 mg per day suppressed more than 90 percent of estradiol's activity in immature rats. LY139481 induced minimal uterotropic activity, and that activity declined in relation to dose. The relative binding affinity of LY139481 for rat uterine cytosol estrogen receptors was greater than that of estradiol in competitive assays and increased in relation to temperature (2.9 +/- 0.5 x estradiol at 30 degrees C). LY139481 caused estradiol-induced uterine hypertrophy to regress in a manner similar to that which resulted from withdrawal of estradiol treatment. Three successive daily injections of LY139481 slightly increased uterine weight, and blocked additional uterotropic action in response to estradiol and LY139481 administration on subsequent days. Furthermore, ten daily injections of estradiol alone did not increase uterine weight in animals pretreated with LY139481 for three days. In contrast, LY139481 did not prevent the partial uterotropic action of tamoxifen administration.  相似文献   

8.
Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.  相似文献   

9.
The 9β isomers of estradiol-17β, estradiol-17α, estrone and 17-ethinylestradiol-17β were synthesized and compared with their 9α-counterparts in the rat uterine cytosol estrogen receptor, utero-tropic, and gonadotropin release inhibition assays. Except for 17-ethinyl-9β-estradiol-17β which was as active as its 9α isomer in the uterotropic assay, none of the 9β estrogens exhibited any biological activity which was equal to or greater than their 9α counterparts. For examples, 9β-estradiol-17β was 110 as active as estradiol-17β, and 9β-estrone was 14 as active as estrone in the uterotropic assay.  相似文献   

10.
One of the main components of conjugated equine estrogens is equilin sulfate and this estrogen in postmenopausal women is metabolized to 17 beta-dihydroequilin, 17 beta-dihydroequilenin and equilenin. To investigate the possibility that some of these estrogens may be formed directly in the target tissues, we studied the in vitro metabolism of [3H]equilin in various types of normal and malignant human endometrium, including adenocarcinoma grown in athymic nude mice. The results indicate that normal and neoplastic human endometrium can form the above three metabolites. The highest level of 17 beta-reduced products were isolated from the normal secretory endometrium. Equilenin was the most abundant metabolite isolated from both the normal and malignant endometrium. The formation of [3H]equilenin indicates the presence of a 6,8(9) steroid dehydrogenase-isomerase in the human endometrium. The formation of 17 beta-dihydroequilin in the endometrium may be of importance as this estrogen is 8 times more potent as a uterotrophic agent than equilin and estrone.  相似文献   

11.
12.
S A Tonetta  J J Ireland 《Steroids》1983,42(4):427-440
Nuclear and cytoplasmic binding sites for estradiol (E2-17 beta) in granulosa cells of immature rats were characterized. These binding sites for estrogen were high affinity, low capacity with an affinity constant (Kd) of 1.9 X 10(-10)M (binding capacity, Ro = 80 pM) for nuclear sites and a Kd = 3.5 X 10(-10) M (Ro = 45 pM) for cytosol sites. Binding was specific for biologically active estrogens. The estrogen receptor in granulosa cells is a protein and heat-labile as treatment with protease or pre-incubation at 37 degrees C for 1 h significantly diminished binding. RNase and DNase had no effect on estrogen binding. Sedimentation coefficients for nuclear and cytosol binding components were 5S and 8S respectively, similar to values obtained with uteri. Finally, translocation was demonstrated after a s.c. injection of E2-17 beta. Forty-five minutes post-injection, cytosol binding sites for estradiol were depleted concomitant with accumulation of nuclear binding sites. We concluded that granulosa cells of immature rats have binding sites specific for estradiol which have characteristics similar to the classical estrogen receptor in uteri.  相似文献   

13.
Cytosolic and nuclear estrogen receptors in the ovary and uterus of immature rats and hamsters were determined to evaluate why exogenous estrogens were ineffective in stimulating follicular maturation in the hamster compared to the rat. Animals were injected sc with oil or single injection of 1 mg estradiol cyclopentylpropionate (ECP) on Day 23 or a daily injection of 2 mg diethylstilbestrol (DES) on Days 23-25 and killed on Day 26. Total binding sites for estrogen in ovarian cytosol of control hamsters were half the number in the rat ovary (28 fmole/mg protein) and about 50% of the receptors were occupied in the hamster. The apparent affinity of the estrogen-cytosol receptor complex was also lower in the hamster (Kd; 1.41 nM) than in the rat (Kd; 0.52 nM). After ECP treatment, there was a tendency for translocation in all 4 tissues examined even though some differences were not statistically significant. However, after DES treatment both cytosol and nuclear estrogen receptors decreased in both species. This discrepancy may be due to the difference in the time course of the nuclear translocation, the difference in metabolism and difference in the binding potencies of ECP and DES. The lack of ovarian responsiveness to estrogen in the hamster thus appears to be due to the reduced number of cytosol receptor sites which have a low affinity for estrogen and are already partially occupied.  相似文献   

14.
Conjugated equine estrogens (CEEs) are routinely used for hormone replacement therapy (HRT), making it important to understand the activities of individual estrogenic components. Although 17beta-estradiol (17beta-E2), the most potent estrogen in CEE, has been extensively characterized, the actions of nine additional less potent estrogens are not well understood. Structural differences between CEEs and 17beta-E2 result in altered interactions with the two estrogen receptors (ERalpha and ERbeta) and different biological activities. To better understand these interactions, we have determined the crystal structure of the CEE analog, 17beta-methyl-17alpha-dihydroequilenin (NCI 122), in complex with the ERalpha ligand-binding domain and a peptide from the glucocorticoid receptor-interacting protein 1 (GRIP1) coactivator. NCI 122 has chemical properties, including an unsaturated B-ring and 17alpha-hydroxyl group, which are shared with some of the estrogens found in CEEs. Structural analysis of the NCI 122-ERalpha LBD-GRIP1 complex, combined with biochemical and cell-based comparisons of CEE components, suggests that factors such as decreased ligand flexibility, decreased ligand hydrophobicity and loss of a hydrogen bond between the 17-hydroxyl group and His524, contribute significantly to the reduced potency of CEEs on ERalpha.  相似文献   

15.
Frederick Sweet 《Steroids》1981,37(2):223-238
Synthesis, biochemical and biological testing of the first carborane derivatives of estrogens are described. Estrone 3-carboranylmethyl ether was synthesized in two steps from estrone. Reduction of estrone 3-carboranylmethyl ether with sodium borohydride provided estradiol-17β 3-carboranylmethyl ether. Enzyme kinetic measurements showed that estrone 3-carboranylmethyl ether is a substrate for human placental 17β-hydroxy-steroid dehydrogenase with Km = 5×10?6M, and Vmax = 0.016 μmol min?1 μg?1. The relative affinity constant of estradiol-17β 3-carboranylmethyl ether for rat uterine estrogen receptor was 0.5 (compared with a value of 100 for estradiol-17β). Consistent with its low affinity for estrogen receptor, the dose-dependent uterotropic response to estradiol-17β 3-carboranylmethyl ether in castrated female rats was one sixtieth that of estradiol-17β. None of the tested rats had a toxic reaction to estradiol-17β 3-carboranylmethyl ether. These results demonstrate that exceptionally stable carborane derivatives of estrogens can be synthesized with preservation of their biochemical and biological properties. Boron-containing estrogens may be useful for thermal neutron capture therapy of cancers with estrogen receptors to concentrate boron in the cell nucleus.  相似文献   

16.
17alpha-E(2), a weak estrogen exhibited both agonistic and antagonistic effects, and caused a time- and dose-dependent induction of VEGF-A mRNA expression in GH3 rat pituitary tumor cells. This effect was unaffected by the presence of the pure estrogen receptor antagonist ICI 182,780 but was specifically blocked by a protein synthesis inhibitor puromycin. Inhibition of phosphatidylinositol-3 kinase (PI3K) activity by wortmannin decreased the effect of 17alpha-E(2) on VEGF-A mRNA expression. This inhibitor also blocked the increase in phosphorylation of Akt induced by exposure to 17alpha-E(2). In contrast, exposure to the MAP kinase inhibitor, U0126, had no impact on 17alpha-E(2)-induced VEGF-A mRNA expression. Taken together, these studies indicate that like potent estrogens 17alpha-E(2) up-regulates VEGF-A mRNA expression in estrogen responsive GH3 rat pituitary tumor cells, but this induction is not mediated through a classical estrogen receptor pathway. PI3K-Akt signaling pathway is required for the induction of VEGF-A mRNA in GH3 cells by 17alpha-E(2).  相似文献   

17.
The development of a sensitive and solvent-free method for the measurement of estrone (E(1)) and 17beta-estradiol (17beta-E(2)) in human urine samples is described. The deconjugated estrogens were derivatized in situ with acetic acid anhydride and the derivatives were extracted directly from the aqueous samples using stir bar sorptive extraction (SBSE). The compounds containing a secondary alcohol function are further derivatized by headspace acylation prior to thermal desorption and gas chromatography/mass spectrometry (GC/MS). A number of experimental parameters, including salt addition, temperature and time, were optimized to increase the recovery of E(1) and 17beta-E(2) by SBSE. The derivatization reactions were also optimized to obtain the highest yields of the acylated estrogens. Detection limits of 0.02 and 0.03 ng mL(-1) were obtained for E(1) and 17beta-E(2), respectively. The method was applied to determine the effect of conjugated equine estrogen intake on the excretion of E(1) and 17beta-E(2) in human urine samples. Increased levels of the endogenous estrogens were detected after administering a standard dose of Premarin to a female volunteer. Routine monitoring of estrogen levels is recommended to avoid a high urinary excretion of E(1) and 17beta-E(2), nowadays enlisted as endocrine disrupting chemicals (EDCs), during hormone replacement therapy.  相似文献   

18.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism.  相似文献   

19.
Mammalian liver is a sex-steroid responsive tissue in that androgen and estrogen receptors are present and mediate differential hepatic hormonal effects. Further, we and others have found a sexual dimorphism in the hepatic cytosolic content of estrogen binding proteins. In addition to the estrogen receptor, the male has a high-capacity (12.0-15.0 pmol/mg protein) estrogen binding protein (MEB) which demonstrates a moderate affinity for estradiol (Kd = 31.0-43.2 nM) if estradiol metabolizing enzymes are first precipitated with protamine sulfate. This protein exhibits a unique specificity for steroidal estrogens: 2-methoxyestriol greater than estradiol greater than estriol = 2-methoxyestradiol greater than 2-hydroxyestradiol greater than estrone greater than 2-methoxyestrone greater than estriol 3-glucuronide greater than 2-hydroxyestrone = 3-methoxyestriol greater than androstanediol greater than dihydrotestosterone greater than testosterone. Other androgens such as androstenedione and methyltrienolone, nonsteroidal estrogens such as diethylstilbestrol, and the antiestrogens tamoxifen and 4-hydroxytamoxifen do not compete for [3H]estradiol ([3H]E2) binding. MEB is a relatively small-molecular-weight protein with a Sr of 20.4 A as determined by gel filtration on Sephadex G-100. The kinetics of [3H]E2 association and dissociation at 4 degrees C are very rapid, with t1/2 values of less than 5 s. Sodium molybdate, generally used to stabilize steroid receptors, inhibits MEB-[3H]estradiol binding activity in cytosol in a time- and dose-dependent manner, an effect not observed with partially purified MEB. Magnesium chloride inhibits binding activity of the Sephadex G-100 MEB pool, an effect reversed by EDTA. Other divalent cations also inhibit binding: Mn2+ greater than Mg2+ greater than Ca2+. Furthermore, EDTA complexes of these cations slightly enhance binding relative to EDTA alone: Ca2+ EDTA greater than Mg2+ EDTA greater than Mn2+ EDTA. These results demonstrate that MEB is a unique sex-steroid binding protein, albeit of unknown function, which is distinct from hepatic steroid receptors.  相似文献   

20.
The binding of radiolabelled methyltrienolone 17 beta-hydroxy-17 alpha-methyl-estra-4,9,11-trien-3-one (R1881) to adult male rat liver cytosol has been characterized in the presence of Na-molybdate to stabilize steroid-hormone receptors, and triamcinolone acetonide to block progestin receptors. Using sucrose density gradient analysis, male liver cytosol contains a [3H] R1881 macromolecular complex which sediments in the 8-9S region. 8S binding of R1881 to male rat serum, female liver cytosol or cytosol from a tfm rat cannot be demonstrated. Further metabolism of [3H] R1881 following 20h incubation with male rat liver cytosol was excluded: In the 8S region 97% of [3H] R1881 was recovered by thin layer chromatography. Characteristics of this [3H] R1881-8S binding protein include high affinity (Kd = 2.3 +/- 41 nM) and low binding capacity (18.8 +/- 3.3 fmol/mg cytosol protein), precipitability in 0-33% ammonium sulfate, and translocation to isolated nuclei following in vivo R1881 treatment. Whereas, the cytosol R1881-receptor is competed for by dihydrotestosterone, testosterone, and estradiol, [3H] estradiol binding in the 8S region is not competitive with androgens but does compete with diethylstilbestrol. The nuclear androgen binding site has a Kd = 2.8 nM for [3H] R1881, and is androgen specific (testosterone greater than 5 alpha-dihydrotestosterone greater than estradiol greater than progesterone greater than cyproterone acetate greater than diethylstilbestrol greater than dexamethasone greater than triamcinolone). Since a number of liver proteins including the drug and steroid metabolizing enzymes are, in part, influenced by the sex-hormone milieu, the presence of a specific androgen receptor in male rat liver may provide valuable insight into the regulation of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号