首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.  相似文献   

2.
Background and Aims Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, ‘one-day’ flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating.Methods We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period.Key Results Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed.Conclusions Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging largely explains the occurrence of mixed mating in I. sinensis, and this mode of self-fertilization probably functions to promote reproductive assurance when pollinator service is limited by windy environmental conditions and competition from co-occurring flowering plants.  相似文献   

3.
Agricultural intensification has resulted in drastic regression of several arable land-dependent weeds. This decrease, along with reduced pollinator abundance, could lead to population-level extinction of self-incompatible species. Alternatively, it could drive adaptation to self-compatibility through selection on standing genetic variation. We investigated whether pseudo-self-compatible (PSC) or self-compatible (SC) plants are present in populations of the rarified weed Centaurea cyanus in the species’ extreme western distribution limits in Europe. We compared seed production of isolated plants and of pairs of plants in cages with or without pollinators. We showed that pollinators are necessary for self-fertilization. The majority of plants were self-incompatible (SI), but about 12% were PSC, and one was SC. Reproductive traits of PSC plants were not different from those of other plants. There was no difference between plants from two regions that differed in C. cyanus abundance. We conclude that the genetic variation necessary to transition to selfing is present in C. cyanus; this could help to maintain endangered populations, but the transition to selfing does not appear to have happened in nature yet.  相似文献   

4.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

5.
The evolution of self-fertilization from primarily outcrossing ancestors is one of the most common evolutionary transitions in plants; however, the ecological mechanisms that maintain self-fertilization have remained controversial. Theoretical studies suggest that selfing is advantageous over outcrossing in terms of genetic transmission and assurance of seed production under pollen-limited circumstances. Trillium camschatcense is a herbaceous perennial distributed in Hokkaido and northern Honshu, Japan. Geographical variation in the breeding system (self-compatible, SC; or self-incompatible, SI) has been reported in populations in Hokkaido. Here, we used several SC and SI populations of T. camschatcense to investigate the adaptive significance and the evolutionary basis of self-fertilization. Pollination experiments and genetic analyses demonstrated that the potential availability of outcross pollen in SC populations was sufficient and that the number of pollen donors was equal to that of SI populations. However, despite the high availability of outcross pollen, the SC populations produced seeds predominantly by selfing and so underwent severe inbreeding depression. Although none of the suggested advantages for self-fertilization were supported by our analyses, we propose two possible scenarios for the evolution of self-fertilization in T. camschatcense.  相似文献   

6.
The evolution of selfing from outcrossing ancestors is known to have occurred repeatedly in angiosperms. Theoretical studies have argued that the transition from outcrossing to selfing is accomplished more easily than the reverse case, and phylogenetic analyses involving self-compatible (SC) and self-incompatible (SI) species has basically supported this assumption. The evolutionary direction of self-compatibility and self-incompatibility was examined in Trillium camschatcense, which contains geographically widespread SC populations, and restricted SI populations. Ecological surveys have revealed that the SC populations were suitable for outcrossing, and selfing in these populations did not confer any fitness advantage. Since reproductive fitness indicates the possibility of an evolutionary shift from self-compatibility to self-incompatibility, the phylogenetic relationships of SI and SC populations of T. camschatcense were investigated based on cpDNA variations and nuclear DNA microsatellite polymorphisms. Although phylogenetic analyses did not provide credible evidence to determine evolutionary direction, the SI populations turned out to be monophyletic with extremely low genetic differentiation. Based on these results, we proposed two possible scenarios for the evolutionary backgrounds of SI and SC populations in T. camschatcense. The plausibility of each scenario was evaluated based on the reproductive and geographical features of the mating systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.  相似文献   

8.
BackgroundSelf-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding.ScopeWe review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the LoliumFestuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species.ConclusionsA better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.  相似文献   

9.
Arabidopsis lyrata is mostly outcrossing due to a sporophytic self‐incompatibility (SI) system but around the Great Lakes of North America some populations have experienced a loss of SI. We researched the loss of SI in a phylogeographic context. We used cpDNA and microsatellite markers to test if populations of North‐American A. lyrata around the Great Lakes have experienced different (recent) histories, and linked this with individually established selfing phenotype and population level realized outcrossing rates calculated based on variation in progeny arrays at multi‐locus microsatellite markers. We found three chloroplast haplotypes, in two of which the loss of self‐incompatibility had occurred independently. Shifts to high rates of inbreeding were most apparent in one of these lineages but individuals showing loss of SI occurred in all three. Self‐compatible individuals usually showed a reduction of observed heterozygosity (HO) compared to outcrossing individuals. In the lineage that included the populations with the highest levels of inbreeding, this reduction was more substantial. This may indicate that the loss of SI in this lineage did not occur as recently as in the other lineage. The geographic distribution of the haplotypes suggested that there had been at least two independent colonization routes to the north of the Great Lakes following the last glaciation. This is consistent with postglacial migration patterns that have been suggested for other organisms with limited dispersal, such as reptiles and amphibians.  相似文献   

10.
Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual–apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.  相似文献   

11.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

12.

Background and Aims

Because of differences in snowmelt time, the reproductive phenologies of alpine plants are highly variable among local populations, and there is large variation in seed set across populations. Temporal variation in pollinator availability during the season may be a major factor affecting not only seed production but also outcrossing rate of alpine plants.

Methods

Among local populations of Phyllodoce aleutica that experience different snowmelt regimes, flowering phenology, pollinator availability, seed-set rate, and outcrossing rate were compared with reference to the mating system (self-compatibility or heterospecific compatibility with a co-occurring congeneric species).

Key Results

Flowering occurred sequentially among populations reflecting snowmelt time from mid-July to late August. The visit frequency of bumble-bees increased substantially in late July when workers appeared. Both seed set and outcrossing rate increased as flowering season progressed. Although flowers were self-compatible and heterospecific compatible, the mixed-pollination experiment revealed that fertilization with conspecific, outcrossing pollen took priority over selfing and hybridization, indicating a cryptic self-incompatibility. In early snowmelt populations, seed production was pollen-limited and autogamous selfing was common. However, genetic analyses revealed that selfed progenies did not contribute to the maintenance of populations due to late-acting inbreeding depression.

Conclusions

Large variations in seed-set and outcrossing rates among populations were caused by the timing of pollinator availability during the season and the cryptic self-incompatibility of this species. Despite the intensive pollen limitation in part of the early season, reproductive assurance by autogamous selfing was not evident. Under fluctuating conditions of pollinator availability and flowering structures, P. aleutica maintained the genetic composition by conspecific outcrossing.Key words: Alpine snowbed, autogamy, bumble-bee, cryptic self-incompatibility, flowering phenology, mixed pollination, outcrossing rate, Phyllodoce aleutica, pollination success, seasonality, self-pollination  相似文献   

13.
Haudry A  Zha HG  Stift M  Mable BK 《Molecular ecology》2012,21(5):1130-1142
A breakdown of self‐incompatibility (SI) followed by a shift to selfing is commonly observed in the evolution of flowering plants. Both are expected to reduce the levels of heterozygosity and genetic diversity. However, breakdown of SI should most strongly affect the region of the SI locus (S‐locus) because of the relaxation of balancing selection that operates on a functional S‐locus, and a potential selective sweep. In contrast, a transition to selfing should affect the whole genome. We set out to disentangle the effects of breakdown of SI and transition to selfing on the level and distribution of genetic diversity in North American populations of Arabidopsis lyrata. Specifically, we compared sequence diversity of loci linked and unlinked to the S‐locus for populations ranging from complete selfing to fully outcrossing. Regardless of linkage to the S‐locus, heterozygosity and genetic diversity increased with population outcrossing rate. High heterozygosity of self‐compatible individuals in outcrossing populations suggests that SI is not the only factor preventing the evolution of self‐fertilization in those populations. There was a strong loss of diversity in selfing populations, which was more pronounced at the S‐locus. In addition, selfing populations showed an accumulation of derived mutations at the S‐locus. Our results provide evidence that beyond the genome‐wide consequences of the population bottleneck associated with the shift to selfing, the S‐locus of A. lyrata shows a specific signal either reflecting the relaxation of balancing selection or positive selection.  相似文献   

14.
Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO2, and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages.  相似文献   

15.
Outcrossing is the prevalent mode of reproduction in plants and animals despite its substantial costs, while selfing and mixed mating occur at much lower frequency. Comparative research on plants has demonstrated the lability of self‐incompatibility, but there is little information about the transition on a within‐species level from self‐incompatibility to predominant selfing. We studied variation in mating system among 18 populations of Arabidopsis lyrata within a phylogenetic context to shed light on the evolution of selfing. Realized and potential mating systems were assessed by genetic analysis with microsatellite markers and hand‐self‐pollinations on 30 plants from each population. The fraction of self‐incompatible plants in a population was highly correlated with the outcrossing rate, showing that the spread of self‐compatibility is accompanied by or soon followed by an increase in the rate of selfing. The four predominantly selfing populations (outcrossing rates < 0.25) fell into more than one phylogenetic cluster, suggesting that the transition to selfing occurred more than once independently. Hence, A. lyrata offers an opportunity for the comparative analysis of outcrossing as a predominant mode of reproduction in plants and of the causes of the shift to selfing.  相似文献   

16.
? Premise of the study: Variation among individuals in levels of inbreeding depression associated with selfing levels could influence mating system evolution by purging deleterious alleles, but empirical evidence for this association is limited. ? Methods: We investigated the association of family-level inbreeding depression and presumed inbreeding history in a tristylous population of Oxalis alpina (Oxalidaceae). ? Key results: Mid-styled individuals possessed the greatest degree of self-compatibility (SC) and produced more autogamous capsules than short- or long-styled individuals. Offspring of highly self-compatible mid-styled individuals showed reduced inbreeding depression. Mid-styled plants that produced capsules autogamously exhibited reduced stigma-anther separation compared to mid-styled plants that produced no capsules autogamously. Reduced inbreeding depression was not correlated with stigma-anther separation, suggesting that self-compatibility and autogamy evolve before morphological changes in stigma-anther separation. ? Conclusions: Purging of inbreeding depression occurred in SC mid-styled maternal families. Low inbreeding depression in SC mid-styled plants may lead to retention of the mid-styled morph in populations, despite the occurrence of higher selfing rates in mid-styled relative to short- or long-styled morphs. Variation among individuals in levels of self-fertilization within populations may lead to associations between inbreeding lineages and lower levels of inbreeding depression, influencing the evolution of mating systems.  相似文献   

17.
Many angiosperms prevent inbreeding through a self‐incompatibility (SI) system, but the loss of SI has been frequent in their evolutionary history. The loss of SI may often lead to an increase in the selfing rate, with the purging of inbreeding depression and the ultimate evolution of a selfing syndrome, where plants have smaller flowers with reduced pollen and nectar production. In this study, we used approximate Bayesian computation (ABC) to estimate the timing of divergence between populations of the plant Linaria cavanillesii that differ in SI status and in which SI is associated with low inbreeding depression but not with a transition to full selfing or a selfing syndrome. Our analysis suggests that the mixed‐mating self‐compatible (SC) population may have begun to diverge from the SI populations around 2810 generation ago, a period perhaps too short for the evolution of a selfing syndrome. We conjecture that the SC population of L. cavanillesii is at an intermediate stage of transition between outcrossing and selfing.  相似文献   

18.
Background and AimsThe transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic–alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer.MethodsIn a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece.Key ResultsThe self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories.ConclusionsOur study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.  相似文献   

19.
The formation of ecotypes has been invoked as an important driver of postglacial biodiversity, because many species colonized heterogeneous habitats and experienced divergent selection. Ecotype formation has been predominantly studied in outcrossing taxa, while far less attention has been paid to the implications of mating system shifts. Here, we addressed whether substrate‐related ecotypes exist in selfing and outcrossing populations of Arabidopsis lyrata subsp. lyrata and whether the genomic footprint differs between mating systems. The North American subspecies colonized both rocky and sandy habitats during postglacial range expansion and shifted the mating system from predominantly outcrossing to predominantly selfing in a number of regions. We performed an association study on pooled whole‐genome sequence data of 20 selfing or outcrossing populations, which suggested genes involved in adaptation to substrate. Motivated by enriched gene ontology terms, we compared root growth between plants from the two substrates in a common environment and found that plants originating from sand grew roots faster and produced more side roots, independent of mating system. Furthermore, single nucleotide polymorphisms associated with substrate‐related ecotypes were more clustered among selfing populations. Our study provides evidence for substrate‐related ecotypes in A. lyrata and divergence in the genomic footprint between mating systems. The latter is the likely result of selfing populations having experienced divergent selection on larger genomic regions due to higher genome‐wide linkage disequilibrium.  相似文献   

20.
Genome‐wide genotyping and Bayesian inference method (BORICE) were employed to estimate outcrossing rates and paternity in two small plant populations of Tolpis succulenta (Asteraceae) on Graciosa island in the Azores. These two known extant populations of T. succulenta on Graciosa have recently evolved self‐compatibility. Despite the expectation that selfing would occur at an appreciable rate (self‐incompatible populations of the same species show low but nonzero selfing), high outcrossing was found in progeny arrays from maternal plants in both populations. This is inconsistent with an immediate transition to high selfing following the breakdown of a genetic incompatibility system. This finding is surprising given the small population sizes and the recent colonization of an island from self‐incompatible colonists of T. succulenta from another island in the Azores, and a potential paucity of pollinators, all factors selecting for selfing through reproductive assurance. The self‐compatible lineage(s) likely have high inbreeding depression (ID) that effectively halts the evolution of increased selfing, but this remains to be determined. Like their progeny, all maternal plants in both populations are fully outbred, which is consistent with but not proof of high ID. High multiple paternity was found in both populations, which may be due in part to the abundant pollinators observed during the flowering season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号