首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of a mutation on fitness may differ between populations depending on environmental and genetic context, but little is known about the factors that underlie such differences. To quantify genome-wide correlations in mutation fitness effects, we developed a novel concept called a joint distribution of fitness effects (DFE) between populations. We then proposed a new statistic w to measure the DFE correlation between populations. Using simulation, we showed that inferring the DFE correlation from the joint allele frequency spectrum is statistically precise and robust. Using population genomic data, we inferred DFE correlations of populations in humans, Drosophila melanogaster, and wild tomatoes. In these species, we found that the overall correlation of the joint DFE was inversely related to genetic differentiation. In humans and D. melanogaster, deleterious mutations had a lower DFE correlation than tolerated mutations, indicating a complex joint DFE. Altogether, the DFE correlation can be reliably inferred, and it offers extensive insight into the genetics of population divergence.  相似文献   

2.
The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate-based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug-resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an expectation–maximization (EM) algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.  相似文献   

3.
Populations are at risk of extinction when unsuitable or when sink habitat exceeds a threshold frequency in the environment. Sinks that present cues associated with high-quality habitats, termed ecological traps, have especially detrimental effects on net population growth at metapopulation scales. Ecological traps for viruses arise naturally, or can be engineered, via the expression of viral-binding sites on cells that preclude viral reproduction. We present a model for virus population growth in a heterogeneous host community, parameterized with data from populations of the RNA bacteriophage Φ6 presented with mixtures of suitable host bacteria and either neutral or trap cells. We demonstrate that viruses can sustain high rates of population growth in the presence of neutral non-hosts as long as some host cells are present, whereas trap cells dramatically reduce viral fitness. In addition, we demonstrate that the efficacy of traps for viral elimination is frequency dependent in spatially structured environments such that population viability is a nonlinear function of habitat loss in dispersal-limited virus populations. We conclude that the ecological concepts applied to species conservation in altered landscapes can also contribute to the development of trap cell therapies for infectious human viruses.  相似文献   

4.
The sigma virus is a vertically transmitted pathogen that commonly infects natural populations of Drosophila melanogaster. This virus is the only known host-specific pathogen of D. melanogaster, and so offers a unique opportunity to study the genetics of Drosophila-viral interactions in a natural system. To elucidate the population genetic processes that operate in sigma virus populations, we collected D. melanogaster from 10 populations across three continents. We found that the sigma virus had a prevalence of 0-15% in these populations. Compared to other RNA viruses, we found that levels of viral genetic diversity are very low across Europe and North America. Based on laboratory measurements of the viral substitution rate, we estimate that most European and North American viral isolates shared a common ancestor approximately 200 years ago. We suggest two explanations for this: the first is that D. melanogaster has recently acquired the sigma virus; the second is that a single viral type has recently swept through D. melanogaster populations. Furthermore, in contrast to Drosophila populations, we find that the sigma viral populations are highly structured. This is surprising for a vertically transmitted pathogen that has a similar migration rate to its host. We suggest that the low structure in the viral populations can be explained by the smaller effective population size of the virus.  相似文献   

5.
Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration. As an alternative hypothesis, we explore the role of recrudescence in persistence of Hendra virus in flying-fox populations via computer simulation using a model that integrates published information on the ecology of flying-foxes, and the ecology and epidemiology of Hendra virus. Simulated infection patterns agree with infection patterns observed in the field and suggest that Hendra virus could be maintained in an isolated flying-fox population indefinitely via periodic recrudescence in a manner indistinguishable from maintenance via periodic immigration of infected individuals. Further, post-recrudescence pulses of infectious flying-foxes provide a plausible basis for the observed seasonal clustering of equine cases. Correct understanding of the infection dynamics of Hendra virus in flying-foxes is fundamental to effectively managing risk of infection in horses and humans. Given the lack of clear empirical evidence on how the virus is maintained within populations, the role of recrudescence merits increased attention.  相似文献   

6.
The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate-based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug-resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an expectation-maximization (EM) algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.  相似文献   

7.
Keightley PD  Eyre-Walker A 《Genetics》2007,177(4):2251-2261
The distribution of fitness effects of new mutations (DFE) is important for addressing several questions in genetics, including the nature of quantitative variation and the evolutionary fate of small populations. Properties of the DFE can be inferred by comparing the distributions of the frequencies of segregating nucleotide polymorphisms at selected and neutral sites in a population sample, but demographic changes alter the spectrum of allele frequencies at both neutral and selected sites, so can bias estimates of the DFE if not accounted for. We have developed a maximum-likelihood approach, based on the expected allele-frequency distribution generated by transition matrix methods, to estimate parameters of the DFE while simultaneously estimating parameters of a demographic model that allows a population size change at some time in the past. We tested the method using simulations and found that it accurately recovers simulated parameter values, even if the simulated demography differs substantially from that assumed in our analysis. We use our method to estimate parameters of the DFE for amino acid-changing mutations in humans and Drosophila melanogaster. For a model of unconditionally deleterious mutations, with effects sampled from a gamma distribution, the mean estimate for the distribution shape parameter is approximately 0.2 for human populations, which implies that the DFE is strongly leptokurtic. For Drosophila populations, we estimate that the shape parameter is approximately 0.35. Differences in the shape of the distribution and the mean selection coefficient between humans and Drosophila result in significantly more strongly deleterious mutations in Drosophila than in humans, and, conversely, nearly neutral mutations are significantly less frequent.  相似文献   

8.
Life-history theory predicts that traits for survival and reproduction cannot be simultaneously maximized in evolving populations. For this reason, in obligate parasites such as infectious viruses, selection for improved between-host survival during transmission may lead to evolution of decreased within-host reproduction. We tested this idea using experimental evolution of RNA virus populations, passaged under differing transmission times in the laboratory. A single ancestral genotype of vesicular stomatitis virus (VSV), a negative-sense RNA Rhabdovirus, was used to found multiple virus lineages evolved in either ordinary 24-h cell-culture passage, or in delayed passages of 48 h. After 30 passages (120 generations of viral evolution), we observed that delayed transmission selected for improved extracellular survival, which traded-off with lowered viral fecundity (slower exponential population growth and smaller mean plaque size). To further examine the confirmed evolutionary trade-off, we obtained consensus whole-genome sequences of evolved virus populations, to infer phenotype–genotype associations. Results implied that increased virus survival did not occur via convergence; rather, improved virion stability was gained via independent mutations in various VSV structural proteins. Our study suggests that RNA viruses can evolve different molecular solutions for enhanced survival despite their limited genetic architecture, but suffer generalized reproductive trade-offs that limit overall fitness gains.  相似文献   

9.
ABSTRACT: BACKGROUND: Viruses are exceedingly diverse in their evolved strategies to manipulate hosts for viral replication. However, despite these differences, most virus populations will occasionally experience two commonly-encountered challenges: growth in variable host environments, and growth under fluctuating population sizes. We used the segmented RNA bacteriophage [GREEK PHI SYMBOL]6 as a model for studying the evolutionary genomics of virus adaptation in the face of host switches and parametrically varying population sizes. To do so, we created a bifurcating deme structure that reflected lineage splitting in natural populations, allowing us to test whether phylogenetic algorithms could accurately resolve this 'known phylogeny'. The resulting tree yielded 32 clones at the tips and internal nodes; these strains were fully sequenced and measured for phenotypic changes in selected traits (fitness on original and novel hosts). RESULTS: We observed that RNA segment size was negatively correlated with the extent of molecular change in the imposed treatments; molecular substitutions tended to cluster on the Small and Medium RNA chromosomes of the virus, and not on the Large segment. Our study yielded a very large molecular and phenotypic dataset, fostering possible inferences on genotype-phenotype associations. Using further experimental evolution, we confirmed an inference on the unanticipated role of an allelic switch in a viral assembly protein, which governed viral performance across host environments. CONCLUSIONS: Our study demonstrated that varying complexities can be simultaneously incorporated into experimental evolution, to examine the combined effects of population size, and adaptation in novel environments. The imposed bifurcating structure revealed that some methods for phylogenetic reconstruction failed to resolve the true phylogeny, owing to a paucity of molecular substitutions separating the RNA viruses that evolved in our study.  相似文献   

10.
The distribution of fitness effects (DFE) for new mutations is fundamental for many aspects of population and quantitative genetics. In this study, we have inferred the DFE in the single-celled alga Chlamydomonas reinhardtii by estimating changes in the frequencies of 254 spontaneous mutations under experimental evolution and equating the frequency changes of linked mutations with their selection coefficients. We generated seven populations of recombinant haplotypes by crossing seven independently derived mutation accumulation lines carrying an average of 36 mutations in the haploid state to a mutation-free strain of the same genotype. We then allowed the populations to evolve under natural selection in the laboratory by serial transfer in liquid culture. We observed substantial and repeatable changes in the frequencies of many groups of linked mutations, and, surprisingly, as many mutations were observed to increase as decrease in frequency. Mutation frequencies were highly repeatable among replicates, suggesting that selection was the cause of the observed allele frequency changes. We developed a Bayesian Monte Carlo Markov Chain method to infer the DFE. This computes the likelihood of the observed distribution of changes of frequency, and obtains the posterior distribution of the selective effects of individual mutations, while assuming a two-sided gamma distribution of effects. We infer that the DFE is a highly leptokurtic distribution, and that approximately equal proportions of mutations have positive and negative effects on fitness. This result is consistent with what we have observed in previous work on a different C. reinhardtii strain, and suggests that a high fraction of new spontaneously arisen mutations are advantageous in a simple laboratory environment.  相似文献   

11.
Visna virus is a lentivirus which causes fusion of infected cells in vitro. Two types of fusion occur. Fusion from without requires no viral replication and a relatively high multiplicity of infection; fusion from within results from the replication of virus in cells. By using fusion from without as an assay, the mechanism of fusion by visna virus was investigated. Immune sera which contained both anti-fusion and neutralizing antibodies interacted with the virus with rapid kinetics in blocking fusion but relatively slow kinetics in the virus neutralization assay. By using visna virus and an antigenic variant, the epitopes responsible for fusion and virus neutralization were shown to be different. Antigenic variation of visna virus resulted in alteration of the neutralization epitope and conservation of the fusion epitope. This suggested that there were two populations of antibodies and that the viral epitopes for fusion and neutralization were separate. These data suggest that visna virus is capable of infecting cells via two pathways: one via the fusion site and the other via the viral epitope which mediates neutralization.  相似文献   

12.
A common paradigm holds that during cell-to-cell transmission, viruses behave as lone soldiers. Recently, we discovered not only that enteroviruses are transmitted via vesicles as populations of viral particles but also that this type of transmission enhances their infection efficiency (Y. H. Chen et al., Cell 160:619–630, 2015). This mechanism could be advantageous for the overall fitness of the viral population, promoting genetic interplay by enabling viral quasispecies to collectively infect a susceptible host cell. Here, we discuss these findings in the context of viral pathogenesis and also propose that this novel type of vesicular transmission is widespread among different virus families and includes populations of both viral particles and naked viral genomes.  相似文献   

13.
Summary Drosophila C virus (DCV) has a considerable impact on ovarian morphogenesis inDrosophila melanogaster host populations. This virus also affects the developmental time and the fresh weight of infected females. In order to investigate the hypothesis that DCV may play a role in the dynamics ofDrosophila populations, the fertility and embryonic and larvo-pupal death rates of a host population and that of five DCV-free populations were determined. A comparison of two populations, one of them DCV-free, the other infected, suggested that the fertility of the DCV-infected flies was higher than that of uninfected flies, despite a greater larvo-pupal death rate. Fertility of the infected flies was greater among the infected population than for the DCV-free populations. The DCV-free populations originated from five different localities. The virus clearly does have an impact on the biotic potential of its host population. This paper reports for the first time a positive interaction between a viral population and a host population as it increases certain parameters of host population dynamics.  相似文献   

14.
While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.  相似文献   

15.
Virus populations can display high genetic diversity within individual hosts. The intra-host collection of viral haplotypes, called viral quasispecies, is an important determinant of virulence, pathogenesis, and treatment outcome. We present HaploClique, a computational approach to reconstruct the structure of a viral quasispecies from next-generation sequencing data as obtained from bulk sequencing of mixed virus samples. We develop a statistical model for paired-end reads accounting for mutations, insertions, and deletions. Using an iterative maximal clique enumeration approach, read pairs are assembled into haplotypes of increasing length, eventually enabling global haplotype assembly. The performance of our quasispecies assembly method is assessed on simulated data for varying population characteristics and sequencing technology parameters. Owing to its paired-end handling, HaploClique compares favorably to state-of-the-art haplotype inference methods. It can reconstruct error-free full-length haplotypes from low coverage samples and detect large insertions and deletions at low frequencies. We applied HaploClique to sequencing data derived from a clinical hepatitis C virus population of an infected patient and discovered a novel deletion of length 357±167 bp that was validated by two independent long-read sequencing experiments. HaploClique is available at https://github.com/armintoepfer/haploclique. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.  相似文献   

16.
The distribution of fitness effects (DFE) of new mutations has been of interest to evolutionary biologists since the concept of mutations arose. Modern population genomic data enable us to quantify the DFE empirically, but few studies have examined how data processing, sample size and cryptic population structure might affect the accuracy of DFE inference. We used simulated and empirical data (from Arabidopsis lyrata) to show the effects of missing data filtering, sample size, number of single nucleotide polymorphisms (SNPs) and population structure on the accuracy and variance of DFE estimates. Our analyses focus on three filtering methods—downsampling, imputation and subsampling—with sample sizes of 4–100 individuals. We show that (1) the choice of missing-data treatment directly affects the estimated DFE, with downsampling performing better than imputation and subsampling; (2) the estimated DFE is less reliable in small samples (<8 individuals), and becomes unpredictable with too few SNPs (<5000, the sum of 0- and 4-fold SNPs); and (3) population structure may skew the inferred DFE towards more strongly deleterious mutations. We suggest that future studies should consider downsampling for small data sets, and use samples larger than 4 (ideally larger than 8) individuals, with more than 5000 SNPs in order to improve the robustness of DFE inference and enable comparative analyses.  相似文献   

17.
While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+) subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+) NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.  相似文献   

18.
Knowing the distribution of fitness effects (DFE) of new mutations is important for several topics in evolutionary genetics. Existing computational methods with which to infer the DFE based on DNA polymorphism data have frequently assumed that the DFE can be approximated by a unimodal distribution, such as a lognormal or a gamma distribution. However, if the true DFE departs substantially from the assumed distribution (e.g., if the DFE is multimodal), this could lead to misleading inferences about its properties. We conducted simulations to test the performance of parametric and nonparametric discretized distribution models to infer the properties of the DFE for cases in which the true DFE is unimodal, bimodal, or multimodal. We found that lognormal and gamma distribution models can perform poorly in recovering the properties of the distribution if the true DFE is bimodal or multimodal, whereas discretized distribution models perform better. If there is a sufficient amount of data, the discretized models can detect a multimodal DFE and can accurately infer the mean effect and the average fixation probability of a new deleterious mutation. We fitted several models for the DFE of amino acid-changing mutations using whole-genome polymorphism data from Drosophila melanogaster and the house mouse subspecies Mus musculus castaneus. A lognormal DFE best explains the data for D. melanogaster, whereas we find evidence for a bimodal DFE in M. m. castaneus.  相似文献   

19.
We have designed a method for growing bone marrow cells infected with Abelson murine leukemia virus which permits examination of target cell growth early after infection. This culture system increases the efficiency of target cell growth by favoring rapid growth of a mixed population of adherent cells in the primary culture. The nonadherent Abelson virus-infected cell populations expressed pre-B-cell differentiation markers characteristic of Abelson virus-transformed cells (mu-heavy chains of immunoglobulin M and terminal deoxynucleotidyltransferase). Early after infection, these cell populations exhibited restricted in vitro and in vivo growth properties which differed from those of an established Abelson virus-transformed cell line, 2M3. These included a marked dependency upon the adherent cell layer for growth and viability, a lower efficiency of agar colony formation, and a lower capacity for tumor production in syngeneic animals. Growth of the early populations could be maintained in the absence of the adherent cell layer by using conditioned medium from long-term adherent cell cultures established in the absence of viral infection. After passage of the populations for several weeks, the in vitro growth properties gradually shifted toward that of the 2M3 cell line. Twelve-week-old populations grew independently of the adherent cell layer and showed an increased efficiency of agar colony formation. These data indicate that many lymphoid target cells exhibit an intermediate transformed phenotype when infected with Abelson virus. Growth of these cells in culture is mediated via a synergistic interaction between intracellular expression of the viral transforming gene and an exogenous growth-promoting activity which can be provided by cultures of adherent bone marrow cells.  相似文献   

20.
A. Fleuriet 《Genetica》1986,70(3):167-177
In natural populations of Drosophila melanogaster, about 10% of the individuals are infected by a virus, sigma, which is not contagious but is transmitted through gametes. These populations are also regularly polymorphic for two alleles, O and P, of a locus ref(2)P; the P allele interferes with the multiplication of the virus. Two viral Types are found in populations, differing in their sensitivity to the P allele. Many samples of flies have been collected in different parts of the world and for each of them, the P frequency has been measured and the viral Type determined. A clear geographical differentiation appears for both these traits; they present a mutual adaptation leading to relatively low frequencies of infected flies in natural populations. Most viruses are only known from highly selected laboratory strains. The observations reported in this paper give evidence of the self restraint exercised by the sigma virus at the population level; they indicate that the characteristics of wild viral clones are likely to differ from those of laboratory strains and also from one population to another.The sigma virus is comparable to other genetical elements, that can be more efficiently transmitted than a mendelian allele, such as transposable elements. The discussion illustrates some of the factors involved in the perpetuation of such elements in a population and points out the difficulty of taking them all into consideration in theoretical models dealing with their perpetuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号