首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过分子筛层析和离子交换层析等手段,分离纯化了棘孢曲霉SM-L22纤维素酶系中的β-葡萄糖苷酶组分。通过SDS-PAGE和IEF电泳测得其分子量为57.9 kDa,等电点为pH 4.5。该酶组分的最适温度60℃,最适pH 5.5,在40℃以下以及pH 3.0~10.0范围内稳定。Fe2+和Mn2+ 对酶有激活作用,而 EDTA对酶有较明显的抑制作用。底物专一性实验表明,该酶可作用于纤维二糖、水杨素和乳糖。作用于纤维二糖和水杨素的Km值分别为17.13 10-3 mol/L 和11.93 10-3 mol/L,Vmax分别为3.456 10-4 mol/L/min和7.139 10-4 mol/L/min,Kcat分别为3.75 S-1和7.73 S-1。  相似文献   

2.
3.
棘孢曲霉SM-L22木聚糖酶系主要组分的纯化与性质   总被引:2,自引:0,他引:2  
陈冠军  王娜  迟菲  刘稳 《微生物学报》2004,44(3):351-355
经超滤浓缩、分子筛色谱、阴离子和阳离子交换层析 ,由棘孢曲霉发酵液最终分离得到 4个电泳纯的木聚糖酶主要组分Xy 1、Xy 2、Xy 3和Xy 4。通过SDS 聚丙烯酰胺凝胶电泳测得各组分的分子量分别是 92 1 3、32 4 0、4 2 4 0和 2 7 0 3kD。实验证明这些酶组分均属于酸性木聚糖酶 ,Xy 1、Xy 2、Xy 3和Xy 4的最适反应pH分别为 5 0、4 0、4 6和 3~ 3 5。各酶组分在酸性条件下较稳定 ,碱性条件下酶活丧失较快。Xy 1及Xy 2的最适反应温度在75℃ ,在 5 0℃以下比较稳定 ;Xy 3及Xy 4最适反应温度为 5 5℃ ,在 4 0℃以下比较稳定。通过对各酶组分米氏常数的测定可知 ,Xy 1及Xy 2对底物桦木木聚糖的Km 值分别为 0 36 %和 0 2 6 % ,Xy 3及Xy 4的Km 值为 2 4 6 %和1 3 9%。 4种组分的Vmax 分别为 4 0 1 μmol min mg、8 81 μmol min mg、81 97μmol min mg、4 71 μmol min mg。Cu2 、Ag 对各组分都有较强的抑制作用 ,Mg2 、Ba2 、Ca2 能促进Xy 3的木聚糖酶活 ,Ca2 也可大幅度促进Xy 4的木聚糖酶活性。  相似文献   

4.
脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质   总被引:1,自引:0,他引:1  
通过Bio GelP 60分子筛和DEAE 与Q sepharose离子交换层析等手段 ,分离纯化了棘孢曲霉SM L2 2纤维素酶系中五种内切酶组分EGⅡ 1、EGⅡ 2、EGⅢ 1、EGⅢ 2和EGⅣ ,并且对这五种内切酶组分的基本性质进行了研究。通过SDS PAGE和IEF电泳测得其分子量分别为 38 7,34 4,31 4,36 9和 2 3 7kD ,等电点分别为pH <3 5,<3 5,4 9,4 5和 5 0。 5个酶组分均属酸性纤维素酶 ,最适pH在 3 5~ 4 0之间 ;最适温度分别为 55℃、60℃、( 60~ 70 )℃、( 60~70 )℃和 60℃。各酶组分有较宽的pH稳定性 ;温度稳定性表现为EGⅡ 1 >EGⅡ 2 >EGⅢ 1>EGⅢ 2 >EGⅣ。EGⅡ 1和EGⅡ 2有较高的底物专一性 ,而EGⅢ 1、EGⅢ 2和EGⅣ对木聚糖有交叉活性。Fe2 +对除EGⅣ以外的四种酶组分都有激活作用 ,尤其是对EGⅢ 2有强烈的激活作用。动力学分析表明各纤维素酶组分对底物亲和力的大小与酶的催化率之间并无相关性。  相似文献   

5.
脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质   总被引:9,自引:1,他引:9  
通过Bio-Gel P-60分子筛和DEAE-与Q-sepharose离子交换层析等手段,分离纯化了棘孢曲霉SM-L22纤维素酶系中五种内切酶组分EGⅡ-1、EGⅡ-2、EGⅢ-1、EGⅢ-2和EGⅣ,并且对这五种内切酶组分的基本性质进行了研究.通过SDS-PAGE和IEF电泳测得其分子量分别为38.7,34.4,31.4,36.9和23.7kD,等电点分别为pH<3.5,<3.5,4.9,4.5和5.0.5个酶组分均属酸性纤维素酶,最适pH在3.5~4.0之间;最适温度分别为55℃、60℃、(60~70)℃、(60~70)℃和60℃.各酶组分有较宽的pH稳定性;温度稳定性表现为EGⅡ-1>EGⅡ-2>EGⅢ-1>EGⅢ-2>EGⅣ.EGⅡ-1和EGⅡ-2有较高的底物专一性,而EGⅢ-1、EGⅢ-2和EGⅣ对木聚糖有交叉活性.Fe2+对除EGⅣ以外的四种酶组分都有激活作用,尤其是对EGⅢ-2有强烈的激活作用.动力学分析表明各纤维素酶组分对底物亲和力的大小与酶的催化率之间并无相关性.  相似文献   

6.
经超滤浓缩、分子筛色谱、阴离子和阳离子交换层析,由棘孢曲霉发酵液最终分离得到4个电泳纯的木聚糖酶主要组分Xy-1、Xy-2、Xy-3和Xy-4。通过SDS聚丙烯酰胺凝胶电泳测得各组分的分子量分别是92.13、32.40、42.40和27.03 kD。实验证明这些酶组分均属于酸性木聚糖酶,Xy-1、Xy-2、Xy-3和Xy-4的最适反应pH分别为5.0、4.0、4.6 和3~3.5。各酶组分在酸性条件下较稳定,碱性条件下酶活丧失较快。Xy-1及Xy-2的最适反应温度在75℃,在50℃以下比较稳定;Xy-3及Xy-4最适反应温度为55℃,在40℃以下比较稳定。通过对各酶组分米氏常数的测定可知,Xy-1及Xy-2对底物桦木木聚糖的Km值分别为0.36%和0.26%,Xy-3及Xy-4的Km值为2.46%和13.9%。4种组分的Vmax分别为4.01μmol/min/mg、8.81μmol/min/mg、81.97μmol/min/mg、4.71μmol/min/mg。Cu2+、Ag+对各组分都有较强的抑制作用, Mg2+、Ba2+、Ca2+能促进Xy-3的木聚糖酶活,Ca2+也可大幅度促进Xy-4的木聚糖酶活性。  相似文献   

7.
灰绿曲霉β-葡萄糖苷酶的分离及特性   总被引:1,自引:0,他引:1  
目的:利用灰绿曲霉EU7-22发酵产纤维素酶,从中分离到β-葡萄糖苷酶,分析其理化特性,确定其最佳活性条件。方法:灰绿曲霉EU7-22发酵液离心后,上清液经硫酸铵沉淀、Phenyl 6 Fast Flow(highsub)疏水层析和Sephacryl S-200凝胶层析,获得纯化的β-葡萄糖苷酶。结果:纯酶的比活性为5.1 IU/mg,得率为13.89%。SDS-PAGE凝胶电泳分析表明该酶是单亚基蛋白,其分子量为56.2 kDa。在pH4.0~6.0范围内,β-葡萄糖苷酶具有较高的稳定性,该酶的最适酶促反应pH为5.0。当β-葡萄糖苷酶在温度低于60℃的缓冲液中温育1 h后,酶活损失不大,表现了较好的稳定性;当该酶在温度高于60℃的缓冲液中温育1 h后,酶活迅速丧失。β-葡萄糖苷酶在70℃时具有最大催化活性。结论:灰绿曲霉EU7-22发酵产生的β-葡萄糖苷酶具有较高活性,具有分子量较小、最佳催化温度较高的特点。  相似文献   

8.
海枣曲霉β—葡萄糖苷酶的提纯与性质   总被引:5,自引:4,他引:5  
A beta-glucosidase has been purified to electrophoretically homogeneity from the wheat bran culture of Aspergillus phoenicis by PEG 6000-phosphate biphasic separation, column chromatography on Sephadex G-100, DEAE-Sephadex A-50 and SE-Sephadex C-50. The enzyme showed optimal activity at pH 5.0 and 60 degrees C. It was stable in the pH range of 4.0-7.5 and up to 55 degrees C. The enzyme activity was strongly inhibited by Ag+ and Hg2+. The molecular weight of the enzyme was 118000 as determined by SDS-PAGE and 195000 by gradient-PAGE. The isoelectric point was pI 3.95 as determined by PAGIF.  相似文献   

9.
β-葡萄糖苷酶的分离纯化和性质研究   总被引:12,自引:0,他引:12  
β-葡萄糖苷酶是纤维素酶的重要组分之一,它不仅可水解纤维二糖和寡糖,更可解除纤维二糖对β-1,4-内切葡聚糖酶和外切葡聚糖酶的抑制,提高水解速率和程度.利用SephadexG-150和DEAE-SephadexA-50层析法从黑曲霉变异株L-22中分离提纯了β-葡萄糖苷酶,该酶是由两个分子量相同的亚基组成的二聚体,每个亚基分子量为203kD.该酶最适pH为4.8,pH稳定范围在3.6~6.4;最适温度是60℃,温度稳定范围为4~60℃;酶分子含糖量为8.35%.它是一个酸性β-葡萄糖苷水解酶,专一性地水解β-糖苷键.而不水解α-糖苷键,对短链底物表现了相对高的活力.用动力学分析和共价化学修饰方法探讨了与该酶活力有关的必需基团.由pH对lgVm和lgVm/Km的影响,推测出酶活性部位至少有两个可解离基团为酶活性所必需,它们在酶-底物复合物中的pKes1和pKes2的值分别为4.0和5.6,在游离酶中的pK值分别为4.2和5.9.由此可初步判断这两个可解离基团可能为组氨酸和含羧基的氨基酸,它们与酶的催化和底物结合可能有关.  相似文献   

10.
一种来源于蜗牛酶的β-葡萄糖苷酶的纯化   总被引:1,自引:0,他引:1  
通过DEAE-Sepharose离子交换分段层析、DEAE-Sepharose离子交换梯度层析和Sephadex G-100凝胶过滤层析三种方法的联用,从中华白玉蜗牛消化酶中提纯出一种β-葡萄糖苷酶。该酶在SDS-PAGE上呈单一蛋白质条带。应用SDS-PAGE和凝胶过滤层析测定其分子量,提示该酶是由4个分子量为110~115 kD的相同亚基组成的同源四聚体。pNPG为底物的动力学参数Km和Vmax分别为0.182 mmol/L和0.189μmol/(min.mg)。  相似文献   

11.
通过DEAE-Sepharose离子交换层析和Sephadex G-100凝胶过滤层析的联用从中华白玉蜗牛消化酶中分离出1种具有人参皂苷Rb_1水解活性的β-葡萄糖苷酶.纯化后该酶在SDS-PAGE上呈单一蛋白质条带.反应最适pH为5.6,最适温度是80 ℃.pH稳定范围很广,在pH为4.0~11.0的溶液中和温度60 ℃以下保持长时间稳定状态,是一个耐碱和中等耐热的糖苷酶.Na~+、K~+、Li~+、Ca~(2+)、Mg~(2+)、EDTA、DTT和SDS不影响该酶活性,而Cu~(2+)、Ag~+和Fe~(3+)对该酶则具有明显的抑制作用.pNPG为底物的动力学参数Km和Vmax分别为0.182 mmol/L和0.189 μmol/(min·mg).  相似文献   

12.
杜娟  陈冠军  高培基 《菌物学报》2001,20(4):566-571
本文研究了影响棘孢曲霉SM-L22纤维素酶系组成的培养条件。研究结果表明,碳源、氮源和初始pH对棘孢曲霉所产生纤维素酶的内、外切酶组分的比例有明显的影响。在2%麸皮,1%CF11,0.5%尿素或含尿素的复合氮源为氮源,初始pH为4.5时,28℃培养120h后,内、外切酶的比值最大,内切酶活可达到3.1 IU/ml,FPA为0.105 IU/ml,CMCase/FPase的比值为30.6。  相似文献   

13.
在7L生物反应器的分批发酵中,通过对无花果曲霉UV-29液态发酵茵丝体的生长、基质消耗(以总糖计)及β-葡萄糖苷酶产生的特性研究,发现总糖是无花果曲霉生长的限制性基质;β-葡萄糖苷酶的增长趋势明显滞后于细胞生长的增长趋势,其发酵过程属于部分相关模型,即Ga—den提出的Ⅱ型发酵;基于logistic方程,建立了发酵动力学模型,同时对实验数据与模型进行了验证比较,模型计算值与实验数据拟合良好。在7L生物反应器的最大茵体生物量(干重)达到1.17g/100mL,β-葡萄糖苷酶最高酶活达到22.25IU/mL。  相似文献   

14.
从黑曲霉Aspergillus niger,发酵液中分离提纯了β-葡萄糖苷酶。提纯步骤通过(NH4)2SO4分级沉淀,DEAE-Sephadex A-50和Sephadex G-100等三步纯化,得到凝胶电泳均一的β-葡萄糖苷酶。该酶的最适pH4.5,最适温度60℃,Km为0.44(pNPG),并有较好的热稳定性。用SDS-凝胶电泳法和凝胶色谱法测得该酶的分子量为120 000。  相似文献   

15.
16.
通过聚乙二醇6000一磷酸钾缓冲液双相分离,Sephadex G—100凝胶过滤、DEAE-Sephadcx A-50及SE-Se phadex C-50离子交换柱层析等提纯步骤,从海枣曲霉(Aspe rgillutphoenlcis)麦麸培养物抽提液中提纯到凝胶电泳均一的β-葡萄糖苷酶。该酶的最适pH5.0,最适温度60℃,在pH 4.0--7.5之间及55℃以下稳定。Ag+及Hg2+对该酶有强烈的抑制作用。用SDS-凝胶电泳法及梯度凝胶电泳法测得该酶均分子量分别为118000及195000薄层凝胶等电聚焦法测得其等电点为pH 3.95。  相似文献   

17.
β—葡萄糖苷酶的分离纯化和性质研究   总被引:7,自引:0,他引:7  
采用分子筛和离子交换层析技术从黑曲霉L-22菌株发酵液中分离提纯了一个由两个相同的亚基组成的β葡萄糖苷酶。研究了其酶学性质和底物专一性。  相似文献   

18.
本文研究了影响棘孢曲霉SM-L22纤维素酶系组成的培养条件。研究结果表明,碳源、氮源和初始pH对棘孢曲霉所产生纤维素酶的内、外切酶组分的比例有明显的影响。在2%麸皮,1%CF11,0.5%尿素或含尿素的复合氮源为氮源,初始pH为4.5时,28℃培养120h后,内、外切酶的比值最大,内切酶活可达到3.1 IU/ml,FPA为0.105 IU/ml,CMCase/FPase的比值为30.6。  相似文献   

19.
【目的】分离获得β-葡萄糖苷酶高产菌株,确定该菌分类地位,并对其所产β-葡萄糖苷酶的酶学性质进行初步研究。【方法】采用七叶灵显色法从土壤样品中筛选β-葡萄糖苷酶产生菌,再用对硝基苯基-β-D-吡喃葡萄糖苷(PNPG)显色法进行复筛;通过形态特征、生理生化特征及16S rDNA序列相似性分析等方法确定其分类学地位;利用超滤、疏水层析、阴离子层析、分子筛层析法对β-葡萄糖苷酶进行分离纯化;以PNPG为底物,测定β-葡萄糖苷酶的最适反应pH及最适反应温度,通过双倒数作图法确定β-葡萄糖苷酶催化不同底物水解的米氏常数Km值。【结果】从土壤样品中筛选得到一株β-葡萄糖苷酶高产菌株ZF-6C,初步鉴定为Bacillus korlensis;芽胞杆菌ZF-6C所产β-葡萄糖苷酶的分子量约为90 kD,最适反应pH和温度分别为7.0和40°C,该酶具有水解β(1,4)糖苷键的活性,最适底物为邻硝基苯-β-D-吡喃葡萄糖苷,Km值为0.73 mmol/L。金属离子Ca2+、Pb2+增强酶活,而Cu2+、Fe2+抑制酶活。【结论】首次报道从Bacillus korlensis中分离得到β-葡萄糖苷酶,Bacillus korlensis ZF-6C所产β-葡萄糖苷酶在分子量、最适反应条件及底物特异性等方面均不同于已知酶,可能为一结构新颖且催化效率较高的β-葡萄糖苷酶。  相似文献   

20.
【目的】获得米曲霉蛋白酶主要成分及其酶学性质。【方法】利用硫酸铵盐析,DEAE-Sepharose FF阴离子交换层析、Phenyl-Sepharose HP疏水层析和Superdex-G75/200凝胶层析对米曲霉所产蛋白酶系进行分离纯化,SDS-PAGE检测蛋白酶纯度和分子量,采用高效液相凝胶色谱分析两种蛋白酶酶解产物。【结果】从米曲霉所产蛋白酶系中分离纯化获得两种蛋白酶组分P1和P2,分子质量分别约为37 kD和45 kD。以酪蛋白为底物时,P1的Km=8.36 g/L,Vm=12.95μg/(mL·min),最适反应条件为pH 8.0、45°C;P2的Km=4.11 g/L,Vm=4.86μg/(mL·min),最适反应条件为pH 7.0、45°C。两种蛋白酶均对酪蛋白水解活性最高,而对牛血清蛋白的水解活性很低。P1和P2分别酶解大豆分离蛋白后水解产物中肽分子质量分布呈现出一定的差异。【结论】两种蛋白酶的酶学性质存在差异;两者对疏水氨基酸构成的肽键具有选择性,但其作用基团存在特异性。这些研究结果将为米曲霉所产蛋白酶在食品上的应用提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号