首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The finding reported in the preceding paper that colipase is able to bind one sodium taurodeoxycholate micelle per molecule was confirmed by dialysis and spectrophotometry. Dialysis in the presence of labelled sodium taurodeoxycholate provided a direct qualitative proof of taurodeoxycholate binding to colipase. This binding was found to occur only above the critical micelle concentration. But, dialysis did not give any information about the composition of the associations, because equilibrium was not attained at the end of the assays. Addition of sodium taurodeoxycholate above the critical micelle concentration was also observed to induce a strong perturbation of the ultraviolet spectrum of one or several of the three tyrosines of colipase. The variation of the perturbation as a function of sodium taurodeoxycholate concentration was consistent with the binding of a single micelle to colipase. The dissociation constant calculated in "micelle molarity" was approximately 1 X 10(-4) M. The colipase-bile salt micelle association can fix one molecule of lipase to form a ternary complex which represents an interesting model of a protein-protein interaction mediated by an organized lipid structure. The ternary complex is probably also a model for lipase-substrate interactions in the presence of an amphipath.  相似文献   

2.
3.
Previous structure-activity studies of the active ileal bile salt transport system have demonstrated that a single negative charge on the side chain is essential for active transport. Furthermore, mutual inhibition studies between different pairs of bile salt substrates indicated that dihydroxy bile salts had a greater apparent affinity for the transport system than the trihydroxylated compounds and triketo bile salts had the least such affinity. In this study, a series of cationic bile salt derivatives (cholamine conjugates) were prepared with one, two, and three alpha-hydroxyl groups on the steroid moiety. Based on the previous observations one would expect (1) no active transport of any of the cholamine conjugates by the ileal transport system; (2) interaction of these compounds with the transport system in such a way as to inhibit the transport of bile salts, with inhibition potency of the transport of any single bile salt inversely related to the number of hydroxyl groups present on the cholamine conjugate; and (3) transport of triketo anionic bile salts to be most readily inhibited, trihydroxy compounds less readily inhibited, and dihydroxy bile salts least inhibited. Using everted gut sac preparations it was demonstrated that all three aforementioned expectations did occur. Furthermore, reversible inhibition of ileal absorption of taurocholate and the bile salt derivative taurodehydrocholate could be demonstrated in vivo. The dihydroxy cholamine conjugates were better inhibitors than the trihydroxy compound. Relative specificity for the bile salt system of these cationic bile salt derivatives was demonstrated in the in vivo preparation by comparing its inhibition of taurodehydrocholate absorption with their lesser capacity to inhibit glucose transport.  相似文献   

4.
Mixed micelles of deoxycholate (DOC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) have been prepared in which the POPC was specifically deuterated in the 2-, 6-, 10-, or 16-position of the palmitoyl chain or in the N-methyl position of the choline head group. The deuterium nuclear magnetic resonance (2H NMR) spectrum of each of these specifically deuterated mixed micelles consists of a singlet whose line width depends upon the position of deuteration. Spin-spin relaxation times indicate a gradient of mobility along the POPC palmitoyl chain in the mixed micelle, with a large increase in mobility on going from the 10- to the 16-position. Spin-lattice relaxation times (T1's) demonstrate a similar gradient of mobility. Both trends in NMR relaxation behavior are consistent with a bilayer arrangement for the solubilized POPC. 2H T1 times for DOC/POPC micelles are significantly shorter than those measured in other bilayer systems, indicating unusually tight phospholipid acyl chain packing in the mixed micelle.  相似文献   

5.
1H nuclear magnetic resonance (NMR) spectra at 500 MHz have been obtained for taurocholate/egg phosphatidylcholine mixtures of varying composition. The excellent chemical shift dispersion permits identification of most resonances for each component. This high-resolution character of the NMR spectra is retained until the phosphatidylcholine (PC) mole fraction exceeds 60–70% (the exact limit depends on ionic strength). 1H linewidths have been monitored as a function of solute composition in order to evaluate trends in local molecular mobility of each component as the distribution of aggregate particles is varied, and to examine the effects of added NaCl in altering micellar size and shape. Although prior light scattering studies (Mazer, N.A., Benedek, G.B. and Carey, M.C. (1980) Biochemistry 19, 601–615) and our own work indicate a 6-fold increase in particle hydrodynamic radius from pure taurocholate micelles to 1 : 1 taurocholate/PC mixtures containing 150 mM NaCl, both lipid components retain substantial motional freedom and exhibit narrow NMR signals in this compositional region. As the solubilization limit for PC is approached (approx. 2:1 PC:taurocholate), differential behavior is observed for the two components: the motion of taurocholate becomes preferentially restricted, while polar portions of the PC remain mobile until large multilayers predominate.  相似文献   

6.
Deuterium NMR of 3alpha,12alpha-dihydroxy-7,7dideutero-5beta-cholanic acid was studied. Molcular sizes obtained from deuterium spin-lattice relaxation time (T1) data of 3alpha,12alpha-dihydroxy-7,7-dideutero-5beta-cholanoic acid in methanol and in water are in accordance with monometic and tetrameric structures in the two media, respectively. The deuterium T1 and intensity of 3alpha,12alpha-dihydroxy-7,7-dideutero-5beta-cholanoic acid in aqueous solution at pH 8.0--8.8 were studied as functions of NcC1 and lecithin concentrations. The results indicated that tetramers are in equilibrium with larger aggregates when secondary micelles are formed in the precense of NaC1, and that 3alpha,12alpha-dihydroxy-7,7-dideutero-5beta-cholanoic acid forms mixed micelles with lecithin with a molecular ratio of 2 : 3.  相似文献   

7.
J Rathelot  R Julien  P Canioni  C Coeroli  L Sarda 《Biochimie》1975,57(10):1117-1122
The rate of hydrolysis of long chain triglycerides by pure bovine pancreatic lipase has been determined in the presence of variable amounts of bile salts and colipase. Cofactor-free lipase is strongly inhibited by sodium taurodesoxycholate and by mixed bovine bile salts at concentrations higher than the critical micellar concentration. Bile salt inhibited lipase is reactivated by the addition of bovine colipase. Gel filtration of pancreatic juice from several species (Cow, dog, pig) on Sephadex G 100 allows the separation of lipase from colipase. It is found that the enzyme catalyzed hydrolysis of long chain triglycerides by pancreatic lipase from one species is activated by the addition of colipase from other species. Studies on the activation of pancreatic lipase by colipase in the presence of bile salts allowed the re-evaluation of optimal conditions for the determination of lipase and the development of a procedure to assay colipase.  相似文献   

8.
9.
10.
Deuterium NMR of 3α,12α-dihydroxy-7,7-dideutero-5β-cholanoic acid was studied. Molecular sizes obtained from deuterium spin-lattice relaxation time (T1) data of 3α,12α-dihydroxy-7,7-dideutero-5β-cholanoic acid in methanol and in water are in accordance with monomeric and tetrameric structures in the two media, respectively. The deuterium T1 and intensity of 3α,12α-dihydroxy-7,7-dideutero-5β-cholanoic acid in aqueous solution at pH 8.0–8.8 were studied as functions of NaCl and lecithin concentrations. The results indicated that tetramers are in equilibrium with larger aggregates when secondary micelles are formed in the precense of NaCl, and that 3α, 12α-dihydroxy-7,7-dideutero-5β-cholanoic acid forms mixed micelles with lecithin with a molecular ratio of 2 : 3.  相似文献   

11.
Micellar cholesterol solubilities in bile salt-monoolein-oleic acid systems have been determined. Whatever the bile salt/oleyl compounds ratio, taurochenodeoxycholate solubilizes more cholesterol than taurocholate and much more than tauroursodeoxycholate. At pH 6.7, the cholesterol solubility limit is about the same with either oleate or monoolein. Cholesterol solubility falls in oleate-bile acid mixtures as the pH is raised. The capacity for supersaturation with cholesterol is greater for bile salt-monoolein than for bile salt-oleate micelles. For the latter it decreases as pH increases.  相似文献   

12.
We examined, by reverse-phase high performance liquid chromatography (HPLC), the hydrophilic-hydrophobic balance of cholesterol and 12 non-cholesterol sterols and related this property to their equilibrium micellar solubilities in sodium taurocholate and sodium glycodeoxycholate solutions. Sterols investigated exhibited structural variations in the polar function (3 alpha-OH, 3 beta-OH, 3 beta-SH), nuclear double bonds (none, delta 5, or delta 7), side chain length (C27, C28, C29) and side chain double bonds (none, delta 22, or delta 24). In general, a sterol's hydrophilic-hydrophobic balance became progressively more hydrophobic (as exemplified by increasing HPLC retention values, k') with additions of side chain methyl (C28) and ethyl (C29) groups and with 3 beta-SH substitution of the 3-OH polar function. Side chain delta 22 and especially delta 24 double bonds rendered the sterols appreciably more hydrophilic, whereas a single nuclear double bond had little influence. Sterol solubilities (24 degrees C, 0.15 M Na+) were uniformly greater in 50 mM solutions of sodium glycodeoxycholate (range 0.15 to 2.5 mM) than in equimolar solutions of the more hydrophilic bile salt, sodium taurocholate (range 0.07 to 0.67 mM). For each bile salt system, a strong inverse correlation existed between micellar solubilities of sterols and their HPLC k' values, indicating that more hydrophilic sterols had greater micellar solubilities than the more hydrophobic ones. Based upon the aqueous monomeric solubilities of cholesterol (C27) and beta-sitosterol (C29) at 24 degrees C, we derived free energy changes associated with micellar binding and found that solubilization of both sterols was more energetically favored in glycodeoxycholate solutions. Although cholesterol exhibited a higher binding affinity than beta-sitosterol in glycodeoxycholate micelles, solubilization of beta-sitosterol in taurocholate micelles was more energetically favored than cholesterol by -0.6 kcal/mol. Based upon these results we offer a thermodynamic explanation for the greater micellar solubilities of more hydrophilic sterols and suggest that the high affinity, but low capacity, of a typical phytosterol for binding to trihydroxy bile salt micelles may provide a physical-chemical basis for its inhibition of intestinal cholesterol absorption.  相似文献   

13.
1H nuclear magnetic resonance (NMR) spectra at 500 MHz have been obtained for taurocholate/egg phosphatidylcholine mixtures of varying composition. The excellent chemical shift dispersion permits identification of most resonances for each component. This high-resolution character of the NMR spectra is retained until the phosphatidylcholine (PC) mole fraction exceeds 60–70% (the exact limit depends on ionic strength). 1H linewidths have been monitored as a function of solute composition in order to evaluate trends in local molecular mobility of each component as the distribution of aggregate particles is varied, and to examine the effects of added NaCl in altering micellar size and shape. Although prior light scattering studies (Mazer, N.A., Benedek, G.B. and Carey, M.C. (1980) Biochemistry 19, 601–615) and our own work indicate a 6-fold increase in particle hydrodynamic radius from pure taurocholate micelles to 1 : 1 taurocholate/PC mixtures containing 150 mM NaCl, both lipid components retain substantial motional freedom and exhibit narrow NMR signals in this compositional region. As the solubilization limit for PC is approached (approx. 2:1 PC:taurocholate), differential behavior is observed for the two components: the motion of taurocholate becomes preferentially restricted, while polar portions of the PC remain mobile until large multilayers predominate.  相似文献   

14.
The binding of conjugated bile salts to pancreatic colipase and lipase has been studied by equilibrium dialysis and gel filtration. The results indicate that at physiological ionic strength and pH, conjugated bile salts bind as micelles to colipase: 12-15 moles/mole of colipase for the dihydroxy conjugates and 2-4 for the trihydroxy conjugates. No binding of bile salt takes place from monomeric solutions. Under the same experimental conditions, only 1-2 moles of conjugated dihydroxy bile salts bind to pancreatic lipase.  相似文献   

15.
Comparison of the primary structures of pancreatic colipases from man, pig, horse and rat shows a high degree of homology between proteins. Fifty-two out of the 95 residues of the polypeptide are identical. All colipases contain 10 half-cystines which are located at invariant positions. The secondary structure of colipases has been predicted from the sequence using the statistical method of Chou and Fasman and the method of Gibrat, Garnier and Robson based on information theory. Predictions indicate that colipases have a low content of alpha-helix and beta-strand structure. The two segments at positions 7-10 and 56-59, assumed to be part of the lipid binding domain, have predicted beta-sheet conformation and should be in close spatial vicinity to each other in the proteins. Four beta-turns are predicted in all colipases at positions 3-6, 46-49, 61-64, and 81-84. They might contribute, with the five disulfide bridges, to a tight packing of the protein molecule. Surface residues and major sequential antigenic determinants of mammalian colipases have been predicted using methods based either on hydrophilicity/hydropathy scales or amino acid mutability. From these studies, it appears that colipases exhibit large conformational homologies. In the absence of data on the tertiary structure of colipase, predictive methods, together with physico-chemical and immunological studies, provide valuable information on the conformation of the protein in relation to the topology of residues involved in the functional and antigenic sites.  相似文献   

16.
17.
Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.  相似文献   

18.
Interaction of lipid micelles (LM), containing cholesterol and hydroxycholesterol, with human serum lipoproteins was investigated. It was shown that cholesterol-containing LM interact with low density lipoproteins (LDL). Selectivity of LM-LDL interaction depended on the cholesterol content of micelles and almost did not depend on the composition of LM core. Up to 90% of LDL were bound with cholesterol-saturated LM. By means of gel chromatography it was shown that interaction of cholesterol- and 7-hydroxycholesterol-containing micelles with serum led to the partial fusion of LDL with LM and LDL-LM complex formation, as well as to the cholesterol and 7-hydroxycholesterol transfer from micelles to LDL. The obtained results indicate that cholesterol-containing LM can be used for the delivery of oxidized cholesterol to cells involving LDL and receptor-dependent pathway of their capture by peripheral cells.  相似文献   

19.
20.
The interaction of sodium taurocholate/egg phosphatidylcholine (TC/PC) micelles with mucin was determined to investigate the exclusion of lipids by mucus in the absorption process. The distribution of TC/PC was assessed at two intermicellar and three phospholipid concentrations with isolated, rat intestinal mucin (RIM) by dialysis. The diffusion coefficients were measured by NMR spectroscopy. At high [PC], RIM had lower [PC] relative to the control, while the concentration of TC was largely independent of mucin concentration. The PC diffusion coefficients were reduced in the presence of RIM. The magnetization decay of TC was compared with simulations to provide estimates of the monomeric diffusivity and exchange rate constant. The rate constants increased with increasing micelle concentration, and the free TC diffusion coefficient was reduced in the presence of mucin. Mucin has an exclusive effect on TC/PC mixed micelles that has been quantitatively determined through the use of diffusion measurements of dialyzed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号