首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied ultrastructural localization of acid phosphatase in derepressed Saccharomyces cerevisiae cells transformed with a multicopy plasmid carrying either the wild-type PHO5 gene or a PHO5 gene deleted in the region overlapping the signal peptidase cleavage site. Wild-type enzyme was located in the cell wall, as was 50% of the modified protein, which carried high-mannose-sugar chains. The remaining 50% of the protein was active and core glycosylated, and it accumulated in the endoplasmic reticulum cisternae. The signal peptide remained uncleaved in both forms. Cells expressing the modified protein exhibited an exaggerated endoplasmic reticulum with dilated lumen.  相似文献   

2.
A systematic study of the signal peptidase cleavage site of the main cell-wall-repressible Saccharomyces cerevisiae acid phosphatase encoded by the PHO5 gene is presented. The last amino acid of the signal sequence, the chromosomally encoded alanine of the wild-type gene, was changed by any of 19 other amino acids in the chromosomal DNA by using in vitro mutagenesis in Escherichia coli and the technique of gene replacement. Processing and secretion are normal when the amino acid at this position is a small neutral amino acid, i.e. alanine, glycine, cysteine, serine or threonine. Processing glycosylation, and secretion of regulated acid phosphatase are distinctly affected with other amino acid substitutions and core-glycosylated protein accumulates in the cell. Surprisingly, PHO5 protein is still secreted to the cell wall and into the growth medium but at a lower rate and without cleavage of the signal sequence. The same features are exhibited by a mutated acid phosphatase with a deletion of four amino acids at the end of the signal peptide (-7 to -4 relative to the processing site) thus preserving the important -3 to -1 region.  相似文献   

3.
Protein sequence requirements for cleavage of the signal peptide from the Rous sarcoma virus glycoprotein have been investigated through the use of deletion mutagenesis. The phenotypes of these mutants have been characterized by expression of the cloned, mutated env genes in CV-1 cells using a late replacement SV40 vector. The deletion mutations were generated by Ba131 digestion at the XhoI site located near the 5' end of the coding sequence for the structural protein gp85, which is found at the amino terminus of the precursor glycoprotein, Pr95. The results of experiments with three mutants (X1, X2, and X3) are presented. Mutant X1 has a 14 amino acid deletion encompassing amino acids 4-17 of gp85, which results in the loss of one potential glycosylation site. In mutants X2 and X3 the amino terminal nine and six amino acids, respectively, of gp85 are deleted. During the biosynthesis of all three mutant polypeptides, the signal peptide is efficiently and accurately cleaved from the nascent protein, even though in mutants X2 and X3 the cleavage site itself has been altered. In these mutants the alanine/aspartic acid cleavage site has been mutated to alanine/asparagine and alanine/glutamine, respectively. These results are consistent with the concept that sequences C-terminal to the signal peptidase site are unimportant in defining the site of cleavage in eucaryotes. Mutants X2 and X3 behave like wild-type with respect to protein glycosylation, palmitic acid addition, cleavage to gp85 and gp37, and expression on the cell surface. Mutant X1, on the other hand, is defective in intracellular transport. Although it is translocated across the rough endoplasmic reticulum and core-glycosylated, its transport appears to be blocked at an early Golgi compartment. No terminal glycosylation of the protein, cleavage of the precursor protein to the mature products, or expression on the cell surface is observed. The deletion in X1 thus appears to destroy signals required for export to the cell surface.  相似文献   

4.
The requirement for the glycine residue at the COOH terminus of the signal peptide of the precursor of the major Escherichia coli outer membrane lipoprotein was examined. Using oligonucleotide-directed site-specific mutagenesis, this residue was replaced by residues of increasing side chain size. Substitution by serine had no effect on the modification or processing of the prolipoprotein. Substitution by valine or leucine resulted in the accumulation of the unmodified precursor, whereas threonine substitution resulted in slow lipid modification and no detectable processing of the lipid modified precursor. The results indicate that serine is the upper limit on size for the residue at the cleavage site. Larger residues at this position prevent the action of both the glyceride transferase and signal peptidase II enzymes, indicating that the cleavage site residue plays a role in events prior to proteolytic cleavage. The upper limit on size of the cleavage site residue is similar to that found for exported proteins cleaved by signal peptidase I, as well as eucaryotic exported proteins. The possibility that the cleavage site residue may have a role other than active site recognition by the signal peptidase is discussed.  相似文献   

5.
Previous studies showed that when the signal sequence plus 9 amino acid residues from the amino terminus of the major lipoprotein of Escherichia coli was fused to beta-lactamase, the resulting hybrid protein was modified, proteolytically processed, and assembled into the outer membrane as was the wild-type lipoprotein (Ghrayeb, J., and Inouye, M. (1983) J. Biol. Chem. 259, 463-467). We have constructed several hybrid proteins with mutations at the cleavage site of the prolipoprotein signal peptide. These mutations are known to block the lipid modification of the lipoprotein at the cysteine residue, resulting in the accumulation of unprocessed, unmodified prolipoprotein in the outer membrane. The mutations blocked the lipid modification of the hybrid protein. However, in contrast to the mutant lipoproteins, the cleavage of the signal peptides for the mutant hybrid proteins did occur, although less efficiently than the unaltered prolipo-beta-lactamase. The mutant prolipo-beta-lactamase proteins were cleaved at a site 5 amino acid residues downstream of the prolipoprotein signal peptide cleavage site. This new cleavage between alanine and lysine residues was resistant to globomycin, a specific inhibitor for signal peptidase II. This indicates that signal peptidase II, the signal peptidase which cleaves the unaltered prolipo-beta-lactamase, is not responsible for the new cleavage. The results demonstrate that the cleavage of the signal peptide is a flexible process that can occur by an alternative pathway when the normal processing pathway is blocked.  相似文献   

6.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

7.
Site-directed mutagenesis was used to replace the codon for the N-terminal cysteine residue of pColE2-P9-encoded mature lysis protein (CelB) by an arginine codon. In contrast to the wild-type CelB protein, the product of the mutated gene, which has an altered signal peptidase cleavage site, was neither processed nor acylated. However, the mutant protein retained sufficient residual activity to cause partial, Mg2+-suppressible lysis and could activate envelope phospholipase A1-A2 and promote colicin release, albeit with reduced efficiency compared to the wild-type protein. We propose that the uncleaved signal peptide of the mutant protein acts as the functional equivalent of the fatty acyl groups normally linked to the N-terminal cysteine residue of the wild-type protein, thereby anchoring the protein in the cell envelope where it exerts its various effects.  相似文献   

8.
The Agrobacterium tumefaciens virB7 gene product contains a typical signal sequence ending with a consensus signal peptidase II cleavage site characteristic of bacterial lipoproteins. VirB7 was shown to be processed as a lipoprotein by (i) in vivo labeling of native VirB7 and a VirB7::PhoA fusion with [3H]palmitic acid and (ii) inhibition of VirB7 processing by globomycin, a known inhibitor of signal peptidase II. A VirB7 derivative sustaining a Ser substitution for the invariant Cys-15 residue within the signal peptidase II cleavage site could not be visualized immunologically and failed to complement a delta virB7 mutation, establishing the importance of this putative lipid attachment site for VirB7 maturation and function. VirB7 partitioned predominantly with outer membrane fractions from wild-type A348 cells as well as a delta virB operon derivative transformed with a virB7 expression plasmid. Expression of virB7 fused to phoA, the alkaline phosphatase gene of Escherichia coli, gave rise to high alkaline phosphatase activities in E. coli and A. tumefaciens cells, providing genetic evidence for the export of VirB7 in these hosts. VirB7 was shown to be intrinsically resistant to proteinase K; by contrast, a VirB7::PhoA derivative was degraded by proteinase K treatment of A. tumefaciens spheroplasts and remained intact upon treatment of whole cells. Together, the results of these studies favor a model in which VirB7 is topologically configured as a monotopic protein with its amino terminus anchored predominantly to the outer membrane and with its hydrophilic carboxyl domain located in the periplasmic space. Parallel studies of VirB5, VirB8, VirB9, and VirB10 established that each of these membrane-associated proteins also contains a large periplasmic domain whereas VirB11 resides predominantly or exclusively within the interior of the cell.  相似文献   

9.
A signal peptidase specifically required for the secretion of the lipoprotein of the Escherichia coli outer membrane cleaves off the signal peptide at the bond between a glycine and a cysteine residue. This cysteine residue was altered to a glycine residue by guided site-specific mutagenesis using a synthetic oligonucleotide and a plasmid carrying an inducible lipoprotein gene. The induction of mutant lipoprotein production was lethal to the cells. A large amount of the prolipoprotein was accumulated in the outer membrane fraction. No protein of the size of the mature lipoprotein was detected. These results indicate that the prolipoprotein signal peptidase requires a glyceride modified cysteine residue at the cleavage site.  相似文献   

10.
The polar, COOH-terminal c-region of signal peptides has been considered to be most important for influencing the efficiency and fidelity of signal peptidase cleavage while the hydrophobic core or h-region appears indispensable for initiating translocation. To identify structural features of residues flanking the c-region that influence the fidelity and efficiency of signal peptidase cleavage as well as co-translational translocation, we introduced six amino acid substitutions into the COOH terminus of the hydrophobic core and seven substitutions at the NH2 terminus of the mature region (the +1 position) of a model eukaryotic preprotein-human pre(delta pro)apoA-II. This preprotein contains several potential sites for signal peptidase cleavage. The functional consequences of these mutations were assayed using an in vitro co-translational translocation/processing system and by post-translational cleavage with purified, detergent-solubilized, hen oviduct signal peptidase. The efficiency of translocation could be correlated with the hydrophobic character of the residue introduced at the COOH terminus of the h-region. Some h/c boundary mutants underwent co-translational translocation across the microsomal membrane with only minimal cleavage yet they were cleaved post-translationally by hen oviduct signal peptidase more efficiently than other mutants which exhibited a high degree of coupling of co-translational translocation and cleavage. These data suggest that features at the COOH terminus of the h-domain can influence "presentation" of the cleavage site to signal peptidase. The +1 residue substitutions had minor effects on the extent of co-translational translocation and processing. However, these +1, as well as h/c boundary mutations, had dramatic effects on the site of cleavage chosen by signal peptidase, indicating that residues flanking the c-region of this prototypic eukaryotic signal peptide can affect the fidelity of its proteolytic processing. The site(s) selected by canine microsomal and purified hen oviduct signal peptidase were very similar, suggesting that "intrinsic" structural features of this prepeptide can influence the selectivity of eukaryotic signal peptidase cleavage, independent of the microsomal membrane and associated translocation apparatus.  相似文献   

11.
The human cytomegalovirus (HCMV) UL37 glycoprotein (gpUL37) is internally cleaved and its products divergently traffic to mitochondria or are retained in the secretory pathway. To define the requirements for gpUL37 cleavage, residues -1 and -3 of the consensus endoplasmic reticulum (ER) signal peptidase I site within exon 3 (UL37x3) were replaced by bulky tyrosines (gpUL37 cleavage site mutant I). Internal cleavage of this UL37x3 mutant was inhibited, verifying usage of the consensus site at amino acids (aa) 193/194. The full-length mitochondrial species of gpUL37 cleavage site mutant I was N glycosylated and endoglycosidase H sensitive, indicating that ER translocation and processing took place prior to its mitochondrial importation. Moreover, these results suggest that internal cleavage of gpUL37 is not necessary for its N glycosylation. Partial deletion or disruption of the UL37 hydrophobic core immediately upstream of the cleavage site resulted in decreased protein abundance, suggesting that the UL37x3 hydrophobic alpha-helix contributes to either correct folding or stability of gpUL37. Insertion of the UL37x3 hydrophobic core and cleavage site into pUL37(M), a splice variant of gpUL37 which lacks these sequences and is neither proteolytically cleaved nor N glycosylated, resulted in its internal cleavage and N glycosylation. Its NH(2)-terminal fragment, pUL37(M-NH2), was detected more abundantly in mitochondria, while its N-glycosylated C-terminal fragment, gpUL37(M-COOH), was detected predominantly in the ER in a manner analogous to that of gpUL37 cleavage products. These results indicate that UL37x3 aa 178 to 205 are prerequisite for gpUL37 internal cleavage and alter UL37 protein topology allowing N glycosylation of its C-terminal sequences. In contrast, the NH(2)-terminal UL37x1 hydrophobic leader, present in pUL37x1, pUL37(M), and gpUL37, is not cleaved from mature UL37 protein, retaining a membrane anchor for UL37 isoforms during trafficking. Taken together, these results suggest that HCMV gpUL37 undergoes sequential trafficking, during which it is ER translocated, processed, and then mitochondrially imported.  相似文献   

12.
The proto-oncogene Wnt-1 encodes a cysteine-rich, secretory glycoprotein implicated in virus-induced mouse mammary cancer and intercellular signaling during vertebrate neural development. To attempt to correlate structural motifs of Wnt-1 protein with its function, 12 mutations were introduced singly and in several combinations into the coding sequence of Wnt-1 cDNA by site-directed mutagenesis. Mutant alleles in a retroviral vector were tested for their ability to transform the mouse mammary epithelial cell line C57MG in two ways: by direct infection of C57MG cells and by infection of NIH3T3 cells that serve as donors of Wnt-1 protein to adjacent C57MG cells in a secretion-dependent (paracrine) assay. In addition, the synthesis and secretion of mutant proteins were monitored in multiple cell types by immunological assays. Deletion of the signal peptide demonstrated that transformation in both direct and paracrine assays depends upon entry of Wnt-1 protein into the endoplasmic reticulum. Changes in potential proteolytic processing sites (two basic dipeptides and a probable signal peptidase cleavage site) did not adversely impair biological activity or protein processing and uncovered a second site for cleavage by signal peptidase. Replacement of each of the four asparagine-linked glycosylation sites did not affect transforming activity at normal temperatures, but one glycosylation site mutant was found to be temperature-sensitive for transformation. An allele encoding a protein that lacks all four glycosylation sites was also transformation competent. In two of four cases, substitution of serine for a cysteine residue impaired transforming activity at the usual temperature, and transformation was temperature sensitive in a third case, implying that at least some of the highly conserved cysteine residues are important for Wnt-1 function.  相似文献   

13.
The env gene of Rous sarcoma virus codes for two glycoproteins which are located on the surface of infectious virions. Subcloning of these coding sequences in the place of the late region of SV40 DNA has allowed the expression of a normally glycosylated, functionally active glycoprotein complex on the surface of monkey cells. Through the use of site-directed mutagenesis, the role of specific amino acids in the signal peptide, signal peptidase cleavage site, and membrane anchor region have been investigated. Amino-terminal mutations have shown that deletion of the signal peptidase cleavage site along with one or two amino acids of the hydrophobic signal peptide results in the synthesis of an unglycosylated, uncleaved, and presumably cytoplasmically located precursor. Nevertheless, changing the signal peptidase cleavage site from ala/asp to ala/asn does not block the translocation of the glycoprotein across the membrane or the action of the peptidase. At the other end of the molecule, carboxy-terminal mutations have shown that the deletion of the hydrophobic membrane anchor region is not sufficient for the secretion of the truncated glycoprotein. Interpretations of these results based on recent models for protein transport and secretion are discussed.  相似文献   

14.
The major phosphate-repressible acid phosphatase (APase) of Saccharomyces cerevisiae, a cell wall glycoprotein, has been extensively used as a reporter protein to analyse successive steps in the yeast secretory pathway. In contrast to other yeast secretory proteins, APase can still be translocated into the endoplasmic reticulum (ER) even when it is made without its signal peptide. This property illustrates the permissiveness of targeting to the ER in yeast. Studies on APase-containing hybrid proteins have provided some of the evidence that specific soluble factors must interact with secretory proteins prior to their translocation across the ER membrane. A systematic analysis of mutations affecting the sequence of the APase signal peptide cleavage site demonstrated that cleavage occurs only when the last amino acid of the signal sequence is small and neutral. This was one of the first studies to verify the requirements for signal peptidase cleavage that had previously only been predicted from statistical analysis. Studies performed either with inhibitors of glycosylation or with mutant APases demonstrated the critical role of core glycosylation for APase folding, which is essential for efficient transport beyond the ER. Following the fate of particular modified APases along the secretory pathway provided insights into some general properties of the secretory apparatus and illustrated the specific requirements for a given protein during its intracellular traffic.  相似文献   

15.
The type II transmembrane serine protease dipeptidyl peptidase IV (DPPIV), also known as CD26 or adenosine deaminase binding protein, is a major regulator of various physiological processes, including immune, inflammatory, nervous, and endocrine functions. It has been generally accepted that glycosylation of DPPIV and of other transmembrane dipeptidyl peptidases is a prerequisite for enzyme activity and correct protein folding. Crystallographic studies on DPPIV reveal clear N-linked glycosylation of nine Asn residues in DPPIV. However, the importance of each glycosylation site on physiologically relevant reactions such as dipeptide cleavage, dimer formation, and adenosine deaminase (ADA) binding remains obscure. Individual Asn-->Ala point mutants were introduced at the nine glycosylation sites in the extracellular domain of DPPIV (residues 39-766). Crystallographic and biochemical data demonstrate that N-linked glycosylation of DPPIV does not contribute significantly to its peptidase activity. The kinetic parameters of dipeptidyl peptidase cleavage of wild-type DPPIV and the N-glycosylation site mutants were determined by using Ala-Pro-AFC and Gly-Pro-pNA as substrates and varied by <50%. DPPIV is active as a homodimer. Size-exclusion chromatographic analysis showed that the glycosylation site mutants do not affect dimerization. ADA binds to the highly glycosylated beta-propeller domain of DPPIV, but the impact of glycosylation on binding had not previously been determined. Our studies indicate that glycosylation of DPPIV is not required for ADA binding. Taken together, these data indicate that in contrast to the generally accepted view, glycosylation of DPPIV is not a prerequisite for catalysis, dimerization, or ADA binding.  相似文献   

16.
The colicin A lysis protein (Cal) is required for the release of colicin A to the medium by producing bacteria. This protein is produced in a precursor form that contains a cysteine at the cleavage site (-Leu-Ala-Ala-Cys). The precursor must be modified by the addition of lipid before it can be processed. The maturation is prevented by globomycin, an inhibitor of signal peptidase II. Using oligonucleotide-directed mutagenesis, the alanine and cystein residues in the -1 and +1 positions of the cleavage site were replaced by proline and threonine residues, respectively, in two different constructs. Both substitutions prevented the normal modification and cleavage of the protein. The marked activation of the outer membrane detergent-resistant phospholipase A observed with wild-type Cal was not observed with the Cal mutants. Both Cal mutants were also defective for the secretion of colicin A. In one mutant, the signal peptide appeared to be cleaved off by an alternative pathway involving signal peptidase I. Electron microscope studies with immunogold labeling of colicin A on cryosections of pldA and cal mutant cells indicated that the colicin remains in the cytoplasm and is not transferred to the periplasmic space. These results demonstrate that Cal must be modified and processed to activate the detergent-resistant phospholipase A and to promote release of colicin A.  相似文献   

17.
The length of the hydrophobic core of the bovine parathyroid hormone signal peptide was modified by in vitro mutagenesis. Extension of the hydrophobic core by three amino acids at the NH2-terminal end had little effect on the proteolytic processing of the signal peptide by microsomal membranes. Deletion of 6 of the 12 amino acids in the core eliminated translocation and processing of the modified protein. Deletion of pairs of amino acids across the core resulted in position-dependent inhibition of signal activity unrelated to hydrophobicity but inversely related to the hydrophobic moments of the modified cores. Deletions in the NH2-terminal region of the core were strongly inhibitory for proteolytic processing whereas deletions in the COOH-terminal region had no effect or increased processing when assessed either co-translationally with microsomal membranes or post-translationally with purified hen oviduct signal peptidase. Deletion of cysteine 18 and alanine 19 increased processing, but deletion of cysteine alone or substitution of leucine for cysteine did not increase processing more than deletion of both residues at 18 and 19. Translations of the translocation-defective mutants with pairs of amino acids deleted in a wheat germ system were inhibited by addition of exogenous signal recognition particle suggesting that interactions of the modified signal peptides with signal recognition particle were normal. The position-dependent effects of the hydrophobic core modifications indicate that structural properties of the core in addition to hydrophobicity are important for signal activity. The parallel effects of the modifications on co-translational translocation and post-translational processing by purified signal peptidase suggest that proteins in the signal peptidase complex might be part of, or intimately associated with, membrane proteins involved in the translocation. A model is proposed in which the NH2-terminal region of the hydrophobic core binds to one subunit of the signal peptidase while the other subunit catalyzes the cleavage.  相似文献   

18.
Hepatitis C virus (HCV) core protein is suggested to localize to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that acts as a membrane anchor for core protein and as a signal sequence for E1 protein. The signal sequence of core protein is further processed by signal peptide peptidase (SPP). We examined the regions of core protein responsible for ER retention and processing by SPP. Analysis of the intracellular localization of deletion mutants of HCV core protein revealed that not only the C-terminal signal-anchor sequence but also an upstream hydrophobic region from amino acid 128 to 151 is required for ER retention of core protein. Precise mutation analyses indicated that replacement of Leu(139), Val(140), and Leu(144) of core protein by Ala inhibited processing by SPP, but cleavage at the core-E1 junction by signal peptidase was maintained. Additionally, the processed E1 protein was translocated into the ER and glycosylated with high-mannose oligosaccharides. Core protein derived from the mutants was translocated into the nucleus in spite of the presence of the unprocessed C-terminal signal-anchor sequence. Although the direct association of core protein with a wild-type SPP was not observed, expression of a loss-of-function SPP mutant inhibited cleavage of the signal sequence by SPP and coimmunoprecipitation with unprocessed core protein. These results indicate that Leu(139), Val(140), and Leu(144) in core protein play crucial roles in the ER retention and SPP cleavage of HCV core protein.  相似文献   

19.
Autotaxin (ATX) is a lysophospholipase D involved in synthesis of lysophosphatidic acid (LPA). ATX is secreted by adipocytes and is associated with adipogenesis and obesity-associated diabetes. Here we have studied the mechanisms involved in biosynthesis and secretion of ATX by mouse 3T3-F442A adipocytes. We found that inhibition of N-glycosylation with tunicamycin or by double point deletion of the amino-acids N53 and N410 of ATX inhibit its secretion. In addition, N-glycosidase treatment and point deletion of the amino-acid N410 inhibits the lysophospholipase D activity of ATX. Analysis of the amino-acid sequence of mouse ATX shows the presence of a N-terminal signal peptide. Treatment with the signal peptidase inhibitor globomycin inhibits ATX secretion by adipocytes. Transfection in Cos-7 cells of site-directed deleted ATX shows that ATX secretion is dependent on the hydrophobic core sequence of the signal peptide, not on the putative signal peptidase cleavage site sequence. Analysis of the amino-acid sequence of mouse ATX also reveals the presence of a putative cleavage site by the protein convertase furin. Treatment of adipocytes with the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone does not modified secretion or lysophospholipase D activity of ATX. Transfection in Cos-7 cells of site-directed deleted ATX shows that the furin recognition site is not required for secretion or lysophospholipase D activity of ATX. In conclusion, the present work demonstrates the crucial role of N-glycosylation in secretion and activity of ATX. The present work also confirms the crucial role signal peptidase in secretion of ATX by adipocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号