首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replacement of methionine (Met) residues by selenomethionine (SeMet) was recently shown to facilitate the crystallographic analysis of protein structure through the application of multi-wavelength anomalous diffraction techniques [Yang et al. (1990) Science (Washington, D.C.) 249, 1398-1405]. The availability of SeMet-containing proteins provides an excellent opportunity to evaluate the effects of the complete replacement of Met by SeMet. We chose to compare the properties of selenomethionyl thymidylate synthase isolated from Escherichia coli DL41 (a methionine auxotroph) and wild-type (wt) enzyme obtained from E. coli Rue10. An improved purification procedure for thymidylate synthase was developed which permitted the isolation of 25 mg of pure protein from 2 g of E. coli in 90% yield in no more than 8 h. The pure wt and SeMet enzymes exhibited specific activities 40% higher than published values. Thermal stability studies at 30 degrees C in degassed buffer showed that the SeMet enzyme (t1/2 67 h) was 8-fold less stable than wt enzyme (t1/2 557 h). The half-lives for the latter enzymes in nondegassed buffers at 30 degrees C were decreased by 2-fold, thus indicating the sensitivity of the enzyme to dissolved oxygen. Both enzymes exhibited essentially the same kinetic and binding properties, including Km(dUMP) (1.2 x 10(-6) M), specificity constant (1.6 x 10(6) s-1 M-1), and Kd for 5-fluorodeoxyuridylate binding (1.2 nM) in covalent inhibitory ternary complexes. In addition, X-ray crystallographic analysis by difference Fourier synthesis showed there was no significant difference in conformation between the SeMet enzyme and the wt enzyme.  相似文献   

2.
The biosynthetic replacement of Met residues by selenomethionine (SeMet) facilitates the determination of three-dimensional structure by multiwavelength anomalous diffraction (Yang, W., Hendrickson, W. A., Crouch, R.J., and Satow, Y. (1990) Science 249, 1398-1405). In an effort to examine any biochemical effects due to the replacement of Met residues by SeMet, we chose to compare the kinetic and binding properties of selenomethionyl dihydrofolate reductase with those of the wt enzyme. There are 5 Met residues in Escherichia coli dihydrofolate reductase with 2 located in the Met-20 loop, which is a sequence of residues forming a lid over the active site. Utilizing plasmid pWT8, which affords 10-15% soluble protein as E. coli dihydrofolate reductase, we readily isolated both the SeMet and wt enzymes from E. coli DL41 utilizing a novel purification protocol. Both enzymes exhibited essentially the same kinetic and binding properties, including specific activities (45 mumol/min/mg), Km (7,8-dihydrofolate = 0.39 microM; NADPH = 2.0 microM), kcat (13.5/s), and 1:1 noncovalent inhibitory binding ratios with methotrexate. The inhibitory effects of divalent and monovalent cations on activity were also assessed, with the SeMet-containing enzyme exhibiting a uniformly greater sensitivity than the wt enzyme. We conclude that the biochemical properties of dihydrofolate reductase are virtually unperturbed by SeMet inclusion. Analysis of SeMet dihydrofolate reductase by 77Se nuclear magnetic resonance spectroscopy revealed five distinct resonances, thus indicating the potential value of this technique in employing selenium as a nonperturbing NMR probe of protein structure and function.  相似文献   

3.
Comparison of the farnesyl diphosphate (FPP) synthase amino acid sequences from four species with amino acid sequences from the related enzymes hexaprenyl diphosphate synthase and geranylgeranyl diphosphate synthase show the presence of two aspartate rich highly conserved domains. The aspartate motif ((I, L, or V)XDDXXD) of the second of those domains has homology with at least 9 prenyl transfer enzymes that utilize an allylic prenyl diphosphate as one substrate. In order to investigate the role of this second aspartate-rich domain in rat FPP synthase, we mutated the first or third aspartate to glutamate, expressed the wild-type and mutant enzymes in Escherichia coli, and purified them to apparent homogeneity using a single chromatographic step. Approximately 12 mg of homogeneous protein was isolated from 120 mg of crude bacterial extract. The kinetic parameters of the purified wild-type recombinant FPP synthase containing the DDYLD motif were as follows: Vmax = 0.84 mumol/min/mg; GPP Km = 1.0 microM; isopentenyl diphosphate (IPP) Km = 2.7 microM. Substitution of glutamate for the first aspartate (EDYLD) decreased the Vmax by over 90-fold. The Km for IPP increased, whereas the Km for GPP remained the same in this D243E mutant. Substitution of glutamate for the third aspartate (DDYLE) did not result in altered enzyme kinetics in the D247E mutant. These results suggest that the first aspartate in the second domain is involved in the catalysis by FPP synthase.  相似文献   

4.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


5.
Yarrowia lipolytica is a nonconventional model micro-organism with multiple biotechnological applications. It is also considered to be an excellent producer for lipase. Genome survey shows that Y. lipolytica possesses various paralogs of genes coding for extracellular, cell-bound, and intracellular lipolytic enzymes. However, little structural information on these isoenzymes is available. With the aim to facilitate crystal structure solution of Lip8, one of the most valuable lipases from Y. lipolytica, a less conventional protein expression technique—selenomethionyl protein expression was used to produce recombinant selenomethionine (SeMet)-Lip8 in Escherichia coli. Finally, three Met residues of Lip8 were all substituted with SeMet. A total of 72?mg of SeMet-Lip8 was obtained from a liter of the SeMet medium. Using sodium acetate as a precipitant and ammonium sulfate as an additive, crystals of the SeMet-Lip8 with 1.9?Å were successfully cultured through hanging-drop vapor diffusion method. The estimated crystal dimensions were 0.11?×?0.11?×?0.14?mm2. The crystal belonged to the space group I4 with unit cell parameters a?=?b?=?128.87?Å, c?=?171.77?Å, α?=?β?=?γ?=?90°. It is the second member of lipase crystal family from Y. lipolytica. This work will provide a platform for further studying lipases from a structural insight.  相似文献   

6.
The gene encoding the meso-diaminopimelate dehydrogenase of Bacillus sphaericus was cloned into E. coli cells and its complete DNA sequence was determined. The meso-diaminopimelate dehydrogenase gene consisted of 978 nucleotides and encoded 326 amino acid residues corresponding to the subunit of the dimeric enzyme. The amino acid sequence deduced from the nucleotide sequence of the enzyme gene of B. sphaericus showed 50% identity with those of the enzymes from Corynebacterium glutamicum and Brevibacterium flavum. The enzyme gene from B. sphaericus was highly expressed in E. coli cells. We purified the enzyme to homogeneity from a transformant with 76% recovery. The N-terminal amino acid of both the enzyme from B. sphaericus and the transformant were serine, indicating that the N-terminal methionine is removed by post-translational modification in B. sphaericus and E. coli cells.  相似文献   

7.
Lipocalin-type prostaglandin D synthase is the key enzyme for the production of prostaglandin D(2), a potent endogenous somnogen, in the brain. We cloned, produced, and crystallized the native enzyme and selenomethionyl Cys(65)Ala mutants of the recombinant mouse protein by the hanging drop vapor-diffusion method with both malonate and citrate as precipitants. The native crystals obtained with malonate belong to orthorhombic space group P2(1)2(1)2(1) with lattice constants a = 46.2, b = 66.8, and c = 105.3 A. The selenomethionyl crystals obtained with citrate belong to orthorhombic space group C222(1) with lattice constants a = 45.5, b = 66.8, and c = 104.5 A. The native crystals diffracted beyond 2.1 A resolution.  相似文献   

8.
赵怡  凌辉生  李任强 《生态科学》2011,30(2):174-177
为了实现Mn-SOD基因在大肠杆菌(E.coli)中的可溶性表达,根据枯草芽孢杆菌(Bacillus subtilis)168sodA核酸序列设计引物,以枯草芽孢杆菌ATCC 9372基因组为模板,PCR扩增获得了Mn-SOD基因.将此基因重组至原核表达载体pET-28a,构建含Mn-SOD基因的重组表达质粒,并转化至大肠杆菌BL21(DE3).异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达获得Mn-SOD,蛋白分子量约为26kD,占全菌蛋白的5.6%.改良的连苯三酚自氧化法测定SOD活力,菌体可溶性总蛋白SOD比活为51.09U·mg-1,是对照组的.8倍.枯草芽孢杆菌ATCC 9372 Mn-SOD基因在大肠杆菌BL21(DE3)中首次成功表达,产物具有较高的可溶性和活性,为大量制备Mn-SOD奠定了基础.  相似文献   

9.
Bacterial beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called FabH) catalyzes the condensation and transacylation of acetyl-CoA with malonyl-ACP. In order to understand the mode of enzyme/substrate interaction and design small molecule inhibitors, we have expressed, purified, and crystallized a selenomethionyl-derivative of E. coli KAS III. Several lines of evidence confirmed that purified selenomethionyl KAS III was homogenous, stably folded, and enzymatically active. Dynamic light scattering, size exclusion chromatography, and mass spectrometry results indicated that selenomethionyl KAS III is a noncovalent homodimer. Diffraction quality crystals of selenomethionyl KAS III/acetyl-CoA complex, which grew overnight to a size of 0.2 mm(3), belonged to the tetragonal space group P4(1)2(1)2.  相似文献   

10.
11.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   

12.
Selenium is a critical trace element, with deficiency associated with numerous diseases including cardiovascular disease, diabetes, and cancer. Selenomethionine (SeMet; a selenium analogue of the amino acid methionine, Met) is a major form of organic selenium and an important dietary source of selenium for selenoprotein synthesis in vivo. As selenium compounds can be readily oxidized and reduced, and selenocysteine residues play a critical role in the catalytic activity of the key protective enzymes glutathione peroxidase and thioredoxin reductase, we investigated the ability of SeMet (and its sulfur analogue, Met) to scavenge hydroperoxides present on amino acids, peptides, and proteins, which are key intermediates in protein oxidation. We show that SeMet, but not Met, can remove these species both stoichiometrically and catalytically in the presence of glutathione (GSH) or a thioredoxin reductase (TrxR)/thioredoxin (Trx)/NADPH system. Reaction of the hydroperoxide with SeMet results in selenoxide formation as detected by HPLC. Recycling of the selenoxide back to SeMet occurs rapidly with GSH, TrxR/NADPH, or a complete TrxR/Trx/NADPH reducing system, with this resulting in an enhanced rate of peroxide removal. In the complete TrxR/Trx/NADPH system loss of peroxide is essentially stoichiometric with NADPH consumption, indicative of a highly efficient system. Similar reactions do not occur with Met under these conditions. Studies using murine macrophage-like J774A.1 cells demonstrate a greater peroxide-removing capacity in cells supplemented with SeMet, compared to nonsupplemented controls. Overall, these findings demonstrate that SeMet may play an important role in the catalytic removal of damaging peptide and protein oxidation products.  相似文献   

13.
14.
Squalene synthase (SQS) is a bifunctional enzyme that catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to give presqualene diphosphate (PSPP) and the subsequent rearrangement of PSPP to squalene. These reactions constitute the first pathway-specific steps in hopane biosynthesis in Bacteria and sterol biosynthesis in Eukarya. The genes encoding SQS were isolated from the hopane-producing bacteria Thermosynechococcus elongatus BP-1, Bradyrhizobium japonicum, and Zymomonas mobilis and cloned into an Escherichia coli expression system. The expressed proteins with a His(6) tag were found exclusively in inclusion bodies when no additives were used in the buffer. After extensive optimization, soluble recombinant T. elongatus BP-1 SQS was obtained when cells were disrupted and purified in buffers containing glycerol. The recombinant B. japonicum and Z. mobilis SQSs could not be solubilized under any of the expression and purification conditions used. Purified T. elongatus His(6)-SQS gave a single band at 42 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and molecular ion at m/z 41886 by electrospray mass spectrometry. Incubation with FPP and NADPH gave squalene as the sole product. Incubation of the enzyme with [(14)C]FPP in the absence of NADPH gave PSPP. The enzyme requires Mg(2+) for activity, has an optimum pH of 7.6, and is strongly stimulated by detergent. Under optimal conditions, the K(m) of FPP is 0.97 +/- 0.10 microM and the k(cat) is 1.74 +/- 0.04 s(-1). Zaragozic acid A, a potent inhibitor of mammalian, fungal, and Saccharomyces cerevisiae SQSs, also inhibited recombinant T. elongatus BP-1 SQS, with a 50% inhibitory concentration of 95.5 +/- 13.6 nM.  相似文献   

15.
目的:对一株产鸟氨酸的钝齿棒杆菌Corynebacterium crenatum SYPA5-5/△proB/△argF(SYPO-1)进行代谢工程改造,筛选不同细菌来源的N-乙酰鸟氨酸脱乙酰基酶在大肠杆菌中克隆与表达,纯化后对其进行酶学性质的比较;将黏质沙雷氏菌Serratia marcescens Y213来源的Smarg E基因编码的N-乙酰鸟氨酸脱乙酰基酶在L-鸟氨酸生产菌株C.crenatum SYPO-1中过量表达,进一步提高L-鸟氨酸的产量。方法:通过利用pDXW10穿梭质粒对不同来源的N-乙酰鸟氨酸脱乙酰化酶进行克隆表达和酶学性质比较,选择性质最优来源的N-乙酰鸟氨酸脱乙酰基酶编码基因Smarg E在产L-鸟氨酸重组钝齿棒杆菌中表达,考察重组菌株发酵过程中参数的变化。结果:来源于S.marcescens Y213的N-乙酰鸟氨酸脱乙酰基酶比酶活最高为798.98U/mg,最适pH为7,最适温度为37℃,0.1mmol/L的Mg~(2+)、Li~+、Mn~(2+)促进酶的比酶活提高了50%;在钝齿棒杆菌中表达N-乙酰鸟氨酸脱乙酰基酶酶活达到128.4U/ml,显著提高了钝齿棒杆菌中胞内乙酰基循环水平;5L发酵罐发酵重组菌株96h,L-鸟氨酸的产量达到38.5g/L,比出发菌株,L-鸟氨酸的产量提高了33.2%,产率达0.401g/(L·h)。结论:筛选出最佳来源的N-乙酰鸟氨酸脱乙酰基酶,在鸟氨酸生产菌株C.crenatum(SYPO-1)中过量表达,可以促进鸟氨酸的前体物质N-乙酰鸟氨酸的快速消耗,实现鸟氨酸的积累。  相似文献   

16.
NAD(P)-dependent glucose-1-dehydrogenase (GDH) has been used for glucose determination and NAD(P)H production in bioreactors. Thermostable glucose dehydrogenase exhibits potential advantage for its application in biological processes. The function of the putative GDH gene (ST1704, 360-encoding amino acids) annotated from the total genome analysis of a thermoacidophilic archeaon Sulfolobus tokodaii strain 7 was investigated to develop more effective application of GDH. The gene encoding S. tokodaii GDH was cloned and the activity was expressed in Escherichia coli, which did not originally possess GDH. This shows that the gene (ST1704) codes the sequence of GDH. The enzyme was effectively purified from the recombinant E. coli with three steps containing a heat treatment and two successive chromatographies. The native enzyme (molecular mass: 160 kDa) is composed of a tetrameric structure with a type of subunit (41 kDa). The enzyme utilized both NAD and NADP as the coenzyme. The maximum activity for glucose oxidation in the presence of NAD was observed around pH 9 and 75 °C in the presence of 20 mM Mg2+. The enzyme showed broad substrate specificity: several monosaccarides such as 6-deoxy- -glucose, 2-amino-2-deoxy- -glucose and -xylose were oxidized as well as -glucose as the electron donor. -Mannose, -ribose and glucose-6-phosphate were inert as the donor. The enzyme showed high thermostability: remarkable loss of activity was not observed up to 80 °C by incubation for 15 min at pH 8.0. In addition, the enzyme was stable in a wide pH range of 5.0–10.5 by incubation at 37 °C. From the steady-state kinetic analysis, the enzyme reaction of -glucose oxidation proceeds via a sequential ordered Bi–Bi mechanism: NAD and -glucose bind to the enzyme in this order and then -glucono-1,5-lactone and NADH are released from the enzyme in this order. The amino acid sequence alignment showed that S. tokodaii GDH exhibited high homology with the Sulfolobus solfataricus hypothetical glucose dehydrogenase and a Thermoplasma acidophilum one.  相似文献   

17.
Killing of target cells by redirected granzyme B in the absence of perforin   总被引:7,自引:0,他引:7  
We have previously reported that nucleoside diphosphate kinase (HsNDK) from extremely halophilic archaeon Halobacterium salinarum was expressed in Escherichia coli as a soluble, but inactive form and required high salt concentrations for in vitro folding and activation. Here, we found that fusion of extra sequence containing hexa-His-tag at amino-terminus of HsNDK (His-HsNDK) facilitated folding and activation of HsNDK in E. coli. This is a first observation of active folding of halophilic enzyme from extremely halophilic archaeon in E. coli. The in vitro refolding rate of His-HsNDK after heat denaturation was greatly increased over the native HsNDK. Folded His-HsNDK isolated from E. coli formed a hexamer in both 0.2 M and 3.8 M NaCl at 30 °C, while the native HsNDK purified from H. salinarum dissociated to dimer in 0.2 M NaCl. The observed hexameric structure in 0.2 M NaCl indicates that amino-terminal extension also enhances dimer to hexamer assembly and stabilizes the structure in low salt. These results suggest that positive charges in fused amino-terminal extension are effective in suppressing the negative charge repulsion of halophilic enzyme and thus, facilitate folding and assembly of HsNDK.  相似文献   

18.
The gene coding from CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase (Ec 2.7.7.43) was amplified from total DNA of E. coli strain K-235 through a primer-directed polymerase chain reaction. The gene was fused with a modified ribosome binding site of the original CMP-NeuAc synthetase gene and a decapeptide tag sequence which served as a marker for screening of expressed proteins. The gene was cloned into lambda ZAP vector at EcoRI and XbaI sites and overexpressed in E. coli Sure at a level approximately 1000 times that of the wild type. The decapeptide-containing enzyme retained almost the same specificity as indicated by the Vmax and Km values using CTP and NeuAc as substrates. A preparative synthesis of CMP-NeuAc based on the recombinant enzyme was demonstrated.  相似文献   

19.
Xylanase B from Paenibacillus barcinonensis was cloned in shuttle vectors for Escherichia coli and Bacillus subtilis, and expressed in Bacillus hosts. Several recombinant strains were constructed, among which B. subtilis MW15/pRBSPOX20 showed the highest production. This recombinant strain consists of a protease double mutant host containing P. barcinonensis xynB gene under the control of a phage SPO2 strong promoter. Maximum production was found when the strain was cultured in nutrient broth supplemented with xylans. Analysis of xylanase B location in B. subtilis MW15/pRBSPOX20 showed that the enzyme remained cell-associated in young cultures, consistent with its intracellular location in its original host, P. barcinonensis, and the lack of a signal peptide. However, when cultures reached the stationary phase, xylanase B was released to the external medium as a result of cell lysis. The amount of enzyme located in the supernatants of old cultures could account for 50% of total xylanase activity. Analysis by SDS-PAGE showed that xylanase B is an abundant protein found in the culture medium in late stationary phase cultures.  相似文献   

20.
The thymidylate synthase (TS)-encoding gene from Cryptococcus neoformans (Cn) has been isolated from cDNA and genomic libraries. The 1127-bp gene contains three introns and a 951-bp open reading frame encoding a 35844-Da protein. The cDNA clones lack 324 bp of the 5' coding region of the gene. The complete coding sequence was assembled as an expression cassette in pUC19 using parts of the coding sequence from the cDNA and genomic DNA and completing the sequence using synthetic DNA. Production of active TS from Cn (CnTS) was first demonstrated by complementation of a thymine(Thy)-requiring Escherichia coli strain. The expression cassette was subsequently subcloned into the T7 polymerase vector pET15-b. In this construct, CnTS is produced as approximately 10% of the total soluble protein in E. coli. Homogeneous enzyme was obtained at a 36% yield after consecutive chromatography on DEAE-cellulose, Q-Sepharose, phenyl-Sepharose and Affi-Gel Blue. Steady-state kinetic analysis showed that the Km values for dUMP and CH2H4-folate were 2.7 ± 0.5 μM and 38.2 ± 2.5 μM, respectively, and the Kcat was 5.1 s−1. The enzyme was stable upon storage at −80°C in Tris-HCl pH 7.4 and thiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号