首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of methods have been proposed for addressing how to optimize the analysis of multiple data sets from diverse mitochondrial and nuclear gene partitions in the pursuit of robust organismal phylogenies. The present study used separate, simultaneous, and conditional data combination methods to analyze 3,135 bp of data from four mitochondrial partitions and the seventh intron of the beta fibrinogen gene in the Asian pit viper genus, Trimeresurus sensu stricto. The phylogenetic utility and homogeneity of all partitions were estimated via a combination of homogeneity partition tests, homoplasy indices, and partitioned Bremer support. Despite the detection of significant heterogeneity of phylogenetic signal between the mitochondrial and nuclear partitions, the simultaneous analysis represented the best-supported topology of all the data. The relatively slow rate (approximately one quarter of the rate of mtDNA) and functionally unconstrained molecular evolution of the intron resulted in much lower levels of homoplasy compared with the mitochondrial partitions. This was further shown via partitioned Bremer support, which, when considered throughout hierarchical clade levels, highlighted the phylogenetic strength and limitations of the intron at deeper and shallower phylogenetic levels, respectively. The simultaneous analysis helped to resolve the phylogenetic relationships of taxa that were unresolved throughout all individual gene trees and tentatively supports the existence of morphologically and genetically distinct clades within the genus. Topological appraisals of the mitochondrial gene partitions suggest that the cytochrome b and the NADH subunit 4 gene partitions are better estimators of phylogenetic relationships than are the 12S and 16S ribosomal RNA partitions at the taxonomic levels under consideration.  相似文献   

2.
The Sepsidae is, with approximately 300 described species, a relatively small family of cyclorrhaphan flies whose behaviour, morphology, and development have been extensively studied. However, currently the only available tree for Sepsidae is more than 10 years old and was based entirely on morphological characters. Here, we present the results of parsimony and Bayesian analyses based on 75 species, ten genes, and morphology. Parsimony and Bayesian analyses produce largely congruent and well‐supported topologies regardless of whether indels are coded as 5th character states, as missing values, or all sites with indels are removed. The tree confirms the monophyly of Sepsidae and identifies the Ropalomeridae as its sister group. With regard to higher‐level relationships, we identify widespread conflict between the morphological and the DNA sequence data. The proposed hypothesis based on both partitions largely reflects the signal in the molecular data. Particularly surprising is the rejection of two relationship hypotheses with strong morphological support, namely the sister group relationship between Orygma and the remaining Sepsidae and the monophyly of the Sepsis species group. Our partitioned Bremer support (PBS) analyses imply that indel coding has a stronger effect on the relative performance of individual gene partitions than the exclusion of alignment‐ambiguous sequences or the location of a gene on the mitochondrial or nuclear genome. However, these analyses also reveal unexpectedly strong fluctuations in PBS values given that indel treatment has only a minor effect on tree topology and jacknife support. These unexpected fluctuations highlight the need for a comparative study across multiple data sets that investigates the influence of conflict and indel treatment on PBS values. © The Willi Hennig Society 2008.  相似文献   

3.
Agapophytinae subf.n. is a highly diverse lineage of Australasian Therevidae, comprising eight described and two new genera: Agapophytus Guérin‐Méneville, Acupalpa Kröber, Acraspisa Kröber, Belonalys Kröber, Bonjeania Irwin & Lyneborg, Parapsilocephala Kröber, Acatopygia Kröber, Laxotela Winterton & Irwin, Pipinnipons gen.n. and Patanothrix gen.n. A genus‐level cladistic analysis of the subfamily was undertaken using sixty‐eight adult morphological characters and c. 1000 base pairs of the elongation factor‐1α (EF‐1α) protein coding gene. The morphological data partition produced three most parsimonious cladograms, whereas the molecular data partition gave a single most parsimonious cladogram, which did not match any of the cladograms found in the morphological analysis. The level of congruence between the data partitions was determined using the partition homogeneity test (HTF) and Wilcoxon signed ranks test. Despite being significantly incongruent in at least one of the incongruence tests, the partitions were combined in a simultaneous analysis. The combined data yielded a single cladogram that was better supported than that of the individual partitions analysed separately. The relative contributions of the data partitions to support for individual nodes on the combined cladogram were investigated using Partitioned Bremer Support. The level of support for many nodes on the combined cladogram was non‐additive and often greater than the sum of support for the respective nodes on individual partitions. This synergistic interaction between incongruent data partitions indicates a common phylogenetic signal in both partitions. It also suggests that criteria for partition combination based solely on incongruence may be misleading. The phylogenetic relationships of the genera are discussed using the combined data. A key to genera of Agapophytinae is presented, with genera diagnosed and figured. Two new genera are described: Patanothrix with a new species (Pat. skevingtoni) and Pat. wilsoni (Mann) transferred from Parapsilocephala, and Pipinnipons with a new species (Pip. kroeberi). Pipinnipons fascipennis (Kröber) is transferred from Squamopygia Kröber and Pip. imitans (Mann) is transferred from Agapophytus. Agapophytus bicolor (Kröber) is transferred from Parapsilocephala. Agapophytus varipennis Mann is synonymised with Aga. queenslandi Kröber and Aga. flavicornis Mann is synonymised with Aga. pallidicornis (Kröber).  相似文献   

4.
Abstract. The muscid genus Thricops Rondani comprises forty‐four species and two subspecies restricted to the northern hemisphere. A species‐level phylogenetic analysis of Thricops was conducted using forty‐four morphological characters, 426 bp of the nuclear gene white and 523 bp spanning the 5′ end of the cytochrome c oxidase subunit I (COI), the tRNA leucine gene (L2 region) and the 3′ end of the cytochrome c oxidase subunit II (COII). Thirty‐nine species and two subspecies of Thricops were included in the analysis. Two species of Azelia Robineau‐Desvoidy and one species of Hydrotaea Robineau‐Desvoidy were used as outgroups. Morphological characters were coded for all included species, the mitochondrial gene fragment (COI + II) was sequenced for a subset of seventeen species of Thricops and three outgroup species, and white for twelve of those seventeen Thricops species and two outgroup species. Six separate maximum parsimony analyses were performed on three taxon sets of different sizes (n = 14, n = 20, n = 44). Results from the partition homogeneity test indicated no significant incongruence between data partitions, and four combined maximum parsimony analyses were conducted (DNA + morphology for n = 14; COI + II + morphology for n = 20; DNA + morphology for n = 20; DNA + morphology for n = 44). The relative contribution of each data partition to individual nodes was assessed using partitioned Bremer support. Strict consensus trees resulting from the unweighted analyses of each dataset are presented. Combination of datasets increased resolution for the small taxon set (n = 14), but not for the larger ones (n = 20, n = 44), most probably due to increasing amounts of missing data in the larger taxon sets. Results from both individual and combined analyses of the smaller taxon sets (n = 14, n = 20) provided support for the monophyly of Thricops and a complete division of the genus into two monophyletic subgroups. The strict consensus cladograms resulting from the analysis of the morphological data alone and the combined data for the large taxa set (n = 44) both supported the monophyly of the genus, but placed the species Thricops foveolatus (Zetterstedt) and Thricops bukowskii (Ringdahl) at the base of the ingroup, in a polytomy with a relatively well‐resolved branch comprising all remaining species of the genus. The basal position of these two species, included in the morphological taxon set but absent in the others, illustrates the potential pitfalls of taxon sampling and missing data in phylogenetic analyses. The synonymy of Alloeostylus with Thricops as proposed by previous authors was supported by our results. Relative contributions of different data partitions is discussed, with the mitochondrial sequence generally providing finer resolution and better branch support than white.  相似文献   

5.
The morphological based taxonomy of highly derived parasite groups is likely to poorly reflect their evolutionary relationships. The taxonomy of the monogenean family Capsalidae, which comprises approximately 180 species of flatworm parasites that predominantly attach to external surfaces of chondrichthyan and teleost fishes, is based mainly on six morphological characters. The phylogenetic history of the family is largely unknown. We reconstructed the phylogenetic relationships of 47 species in 20 genera from eight of the nine subfamilies, from nucleotide sequences of three unlinked nuclear genes, 28S ribosomal RNA, Histone 3 and Elongation Factor 1 α. Our phylogeny was well corroborated, with 75% of branches receiving strong support from both Bayesian posterior probabilities and maximum likelihood bootstrap proportions and all nodes showed positive partitioned likelihood support for each of the three genes. We found that the family was monophyletic, with the Gyrodactylidae and Udonellidae forming the sister group. The Capsalinae was monophyletic, however, our data do not support monophyly for the Benedeniinae, Entobdellinae and Trochopodinae. Monophyly was supported for Capsala, Entobdella, Listrocephalos, Neobenedenia and Tristoma, but Benedenia and Neoentobdella were polyphyletic. Comparisons of the distribution of character states for the small number of morphological characters on the molecular phylogeny show a high frequency of apparent homoplasy. Consequently the current morphological classification shows little correspondence with the phylogenetic relationships within the family.  相似文献   

6.
The phylogenetic relationships of 22 species of Coelopidae are reconstructed based on a data matrix consisting of morphological and DNA sequence characters (16S rDNA, EF-1alpha). Optimal gap and transversion costs are determined via a sensitivity analysis and both equal weighting and a transversion cost of 2 are found to perform best based on taxonomic congruence, character incongruence, and tree support. The preferred phylogenetic hypothesis is fully resolved and well-supported by jackknife, bootstrap, and Bremer support values, but it is in conflict with the cladogram based on morphological characters alone. Most notably, the Coelopidae and the genus Coelopa are not monophyletic. However, partitioned Bremer Support and an analysis of node stability under different gap and transversion costs reveal that the critical clades rendering these taxa non-monophyletic are poorly supported. Furthermore, the monophyly of Coelopidae and Coelopa is not rejected in analyses using 16S rDNA that was manually aligned. The resolution of the tree based on this reduced data sets is, however, lower than for the tree based on the full data sets. Partitioned Bremer support values reveal that 16S rDNA characters provide the largest amount of tree support, but the support values are heavily dependent on analysis conditions. Problems with direct comparison of branch support values for trees derived using fixed alignments with those obtained under optimization alignment are discussed. Biogeographic history and available behavioral and genetic data are also discussed in light of this first cladogram for Coelopidae based on a quantitative phylogenetic analysis.  相似文献   

7.
Species definitions for plant pathogens have considerable practical impact for measures such as plant protection or biological control, and are also important for comparative studies involving model organisms. However, in many groups, the delimitation of species is a notoriously difficult taxonomic problem. This is particularly evident in the obligate biotrophic downy mildew genera (Peronosporaceae, Peronosporales, Oomycetes), which display a considerable diversity with respect to genetic distances and host plants, but are, for the most part, morphologically rather uniform. The recently established genus Hyaloperonospora is of particular biological interest because it shows an impressive radiation on virtually a single host family, Brassicaceae, and it contains the downy mildew parasite, Arabidopsis thaliana, of importance as a model organism. Based on the most comprehensive molecular sampling of specimens from a downy mildew genus to date, including various collections from different host species and geographic locations, we investigate the phylogenetic relationships of Hyaloperonospora by molecular analysis of the nuclear ribosomal ITS and LSU sequences. Phylogenetic trees were inferred with ML and MP from the combined dataset; partitioned Bremer support (PBrS) was used to assess potential conflict between data partitions. As in other downy mildew groups, the molecular data clearly corroborate earlier results that supported the use of narrow species delimitations and host ranges as taxonomic markers. With few exceptions, suggested species boundaries are supported without conflict between different data partitions. The results indicate that a combination of molecular and host features is a reliable means to discriminate downy mildew species for which morphological differences are unknown.  相似文献   

8.
This study compiles previously published morphological, colour and behavioural characters and includes new DNA sequence data for eight markers (one mitochondrial and seven nuclear) to re‐evaluate phylogenetic relationships and estimate times of divergence for Morpho butterflies using parsimony and Bayesian methods. We note an effect of missing data on phylogenetic inference and calculations of Partitioned Bremer Support. Morphology and DNA trees were moderately congruent, and the combined analyses of all data included elements of both sources. Both morphology and DNA support the monophyly of Morpho and the early separation of the sister pair M. marcus plus M. eugenia, but trees from different data sources are congruent mostly at derived nodes, and differ at several internal nodes. The analyses of combined data indicate that Morpho is composed of four clades each of which include one or more previously proposed subgenera. The subgenera Pessonia and Morpho were not monophyletic, and to address this issue we propose that Pessonia, syn.nov. be subsumed within Morpho. The ancestor of Morpho probably arose during the Oligocene, and most diversification seems to have occurred during the late Miocene. S‐DIVA analysis suggests eastern Andean region as the ancestral area for Morpho, and that the South American Atlantic Forest was colonized multiple times.  相似文献   

9.
To improve our understanding of phylogenetic relationships within the anamorphic genus Septoria, three molecular data sets representing 2,417 bp of nuclear and mitochondrial genes were evaluated. Separate gene analyses and combined analyses were performed using first, the maximum parsimony criterion and second, a Bayesian framework. The homogeneity of data partitions was evaluated via a combination of homogeneity partition tests and tree topology incongruence tests before conducting combined analyses. A last incongruence re-evaluation using partitioned Bremer support was performed on the combined tree, which corroborated the previous estimates. After each separate data set attributes were examined, simple explanations were advocated as the causes of the significant incongruences detected. The analysis of multiple gene partitions showed unprecedented phylogenetic resolution within the genus Septoria that supported the results from previously published single gene phylogenies. Specifically, we have delimited distinct but closely related species representing monophyletic groups that frequently correlated with their respective host families. Conversely, the occurrence of well-supported groups including closely related but distinct molecular taxa sampled on unrelated host-plants allowed us to reject, in these particular cases, the co-evolutionary concept expected between a parasite and its host and to discuss alternative evolutionary models recently proposed for these pathogens.  相似文献   

10.
We present a higher‐level phylogenetic hypothesis for the diverse neotropical butterfly subfamily Ithomiinae, inferred from one of the largest non‐molecular Lepidoptera data sets to date, including 106 species (105 ingroup) and 353 characters (306 informative) from adult and immature stage morphology and ecology. Initial analyses resulted in 1716 most parsimonious trees, which were reduced to a single tree after successive approximations character weighting. The inferred phylogeny was broadly consistent with other past and current work. Although some deeper relationships are uncertain, tribal‐level clades were generally strongly supported, with two changes required to existing classification. The tribe Melinaeini is polyphyletic and Athesis + Patricia require a new tribe. Methona should be removed from Mechanitini into the restored tribe Methonini. Dircennini was paraphyletic in analyses of all data but monophyletic based on adult morphology alone, and its status remains to be confirmed. Hypothyris, Episcada, Godyris, Hypoleria and Greta are paraphyletic. A simulation analysis showed that relatively basal branches tended to have higher partitioned Bremer support for immature stage characters. Larval hostplant records were optimized on to a reduced, generic‐level phylogeny and indicate that ithomiines moved from Apocynaceae to Solanaceae twice, or that Tithoreini re‐colonized Apocynaceae after a basal shift to Solanaceae. Ithomiine clades have specialized on particular plant clades suggesting repeated colonization of novel hostplant niches consistent with adaptive radiation. The shift to Solanum, comprising 70% of neotropical Solanaceae, occurs at the base of a clade containing 89% of all ithomiines, and is interpreted as the major event in the evolution of ithomiine larval hostplant relationships. © The Willi Hennig Society 2006.  相似文献   

11.
Multi-gene phylogenetic analyses were conducted to address the evolution of Clavicipitaceae (Ascomycota). Data are presented here for approximately 5900 base pairs from portions of seven loci: the nuclear ribosomal small and large subunit DNA (nrSSU and nrLSU), beta-tubulin, elongation factor 1alpha (EF-1alpha), the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2), and mitochondrial ATP Synthase subunit 6 (mtATP6). These data were analyzed in a complete 66-taxon matrix and 91-taxon supermatrix that included some missing data. Separate phylogenetic analyses, with data partitioned according to genes, produced some conflicting results. The results of separate analyses from RPB1 and RPB2 are in agreement with the combined analyses that resolve a paraphyletic Clavicipitaceae comprising three well-supported clades (i.e., Clavicipitaceae clade A, B, and C), whereas the tree obtained from mtATP6 is in strong conflict with the monophyly of Clavicipitaceae clade B and the sister-group relationship of Hypocreaceae and Clavicipitaceae clade C. The distribution of relative contribution of nodal support for each gene partition was assessed using both partitioned Bremer support (PBS) values and combinational bootstrap (CB) analyses, the latter of which analyzed bootstrap proportions from all possible combinations of the seven gene partitions. These results suggest that CB analyses provide a more consistent estimate of nodal support than PBS and that combining heterogeneous gene partitions, which individually support a limited number of nodes, results in increased support for overall tree topology. Analyses of the 91-taxa supermatrix data sets revealed that some nodes were more strongly supported by increased taxon sampling. Identifying the localized incongruence of mtATP6 and analyses of complete and supermatrix data sets strengthen the evidence for rejecting the monophyly of Clavicipitaceae and much of the current subfamilial classification of the family. Although the monophyly of the grass-associated subfamily Clavicipitoideae (e.g., Claviceps, Balansia, and Epichlo?) is strongly supported, the subfamily Cordycipitoideae (e.g., Cordyceps and Torrubiella) is not monophyletic. In particular, species of the genus Cordyceps, which are pathogens of arthropods and truffles, are found in all three clavicipitaceous clades. These results imply that most characters used in the current familial classification of Clavicipitaceae are not diagnostic of monophyly.  相似文献   

12.
The phylogeny of the bee‐killing flies, genus Melaloncha Brues (Diptera: Phoridae) is analysed using six genes –cytochrome oxidase I, 16S ribosomal DNA, 12S ribosomal DNA, NADH1 dehydrogenase, 28S ribosomal DNA and CAD– plus 47 morphological characters. A total of 91 specimens, including eight out‐groups and 83 Melaloncha (representing 70 species) were included in the analyses. Parsimony analysis of the combined data set produced a single most parsimonious tree with varied Bremer and bootstrap support of interior nodes. Bayesian analysis of molecules only and of morphology + molecules produced trees largely in agreement with parsimony results, although with a few differences. Supported groups included subfamily Metopininae, genus Melaloncha, and subgenera Melaloncha s.s. and Melaloncha (Udamochiras) Enderlein. Within the subgenera, the previously recognized Melaloncha furcata, Melaloncha cingulata, Melaloncha ungulata and Melaloncha stylata groups were recovered, as well as some new groupings. The M. furcata group was placed as the sister group of other Melaloncha s.s., which is consistent with known host‐attacking behaviour.  相似文献   

13.
Phylogeny of the Nymphalidae (Lepidoptera)   总被引:9,自引:0,他引:9  
A generic-level phylogeny for the butterfly family Nymphalidae was produced by cladistic analysis of 234 characters from all life stages. The 95 species in the matrix (selected from the 213 studied) represent all important recognized lineages within this family. The analysis showed the taxa grouping into six main lineages. The basal branch is the Libytheinae, with the Danainae and Ithomiinae on the next branch. The remaining lineages are grouped into two main branches: the Heliconiinae-Nymphalinae, primarily flower-visitors (but including the fruit-attracted Coeini); and the Limenitidinae (sensu strictu), Biblidinae, and the satyroid lineage (Apaturinae, Charaxinae, Biinae, Calinaginae, Morphinae, Brassolinae, and Satyrinae), primarily fruit-attracted. Data partitions showed that the two data sets (immatures and adults) are very different, and a partitioned Bremer support analysis showed that the adult characters are the main source of conflict in the nodes of the combined analysis tree. This phylogeny includes the widest taxon coverage of any morphological study on Nymphalid butterflies to date, and supports the monophyly and relationships of most presently recognized subgroups, providing strong evidence for the presently accepted phylogenetic scheme.  相似文献   

14.
A new phylogenetic hypothesis for the Neotropical butterfly genus Hamadryas, based on the combination of a morphological matrix, one mitochondrial (COI) and four nuclear markers (CAD, RpS5, EF1a, and Wingless), is presented. Results from analyses of the molecular evidence are compared with a previously published morphological phylogeny. Molecular data and the analysis of the complete dataset support the monophyly of Hamadryas and most sister groups suggested by morphological data alone. The addition of DNA sequences to the morphological matrix helped define species groups for which no morphological synapomorphies were found. Partitioned Bremer support indicates that COI, CAD, and morphology were consistently in agreement with the combined evidence tree. In contrast, signal from the nuclear markers Rps5, EF1a, and Wingless showed indifference at most levels of the tree, and minor conflict at nodes solving the relationships between species groups. Though resolved, the combined evidence tree shows low resample values, particularly among species groups whose relationships were characterized by short internodes. A reassessment about the pattern of character change for sound production is presented and discussed.  相似文献   

15.
We infer for the first time the phylogenetic relationships of genera and tribes in the ecologically and evolutionarily well‐studied subfamily Nymphalinae using DNA sequence data from three genes: 1450 bp of cytochrome oxidase subunit I (COI) (in the mitochondrial genome), 1077 bp of elongation factor 1‐alpha (EF1‐α) and 400–403 bp of wingless (both in the nuclear genome). We explore the influence of each gene region on the support given to each node of the most parsimonious tree derived from a combined analysis of all three genes using Partitioned Bremer Support. We also explore the influence of assuming equal weights for all characters in the combined analysis by investigating the stability of clades to different transition/transversion weighting schemes. We find many strongly supported and stable clades in the Nymphalinae. We are also able to identify ‘rogue’ taxa whose positions are weakly supported (the different gene regions are in conflict with each other) and unstable. Our main conclusions are: (1) the tribe Coeini as currently constituted is untenable, and Smyrna, Colobura and Tigridia are part of Nymphalini; (2) ‘Kallimini’ is paraphyletic with regard to Melitaeini and should be split into three tribes: Kallimini s.s., Junoniini and Victorinini; (3) Junoniini, Victorinini, Melitaeini and the newly circumscribed Nymphalini are strongly supported monophyletic groups, and (4) Precis and Junonia are not synonymous or even sister groups. The species Junonia coenia, a model system in developmental biology, clearly belongs in the genus Junonia. A dispersal‐vicariance analysis suggests that dispersal has had a major effect on the distributions of extant species, and three biotic regions are identified as being centres of diversification of three major clades: the Palaearctic for the Nymphalis‐group, the Afrotropics for Junoniini and the Nearctic for Melitaeini. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 227–251.  相似文献   

16.
Relationships among representatives of the five major Hawaiian Drosophila species groups were examined using data from eight different gene regions. A simultaneous analysis of these data resulted in a single most-parsimonious tree that (1) places the adiastola picture-winged subgroup as sister taxon to the other picture-winged subgroups, (2) unites the modified-tarsus species group with flies from the Antopocerus species group, and (3) places the white-tip scutellum species group as the most basal taxon. Because of the different gene sources used in this study, numerous process partitions can be erected within this data set. We examined the incongruence among these various partitions and the ramifications of these data for the taxonomic consensus, prior agreement, and simultaneous analysis approaches to phylogenetic reconstruction. Separate analyses and taxonomic consensus appear to be inadequate methods for dealing with the partitions in this study. Although detection of incongruence is possible and helps elucidate particular areas of disagreement among data sets, separation of partitions on the basis of incongruence is problematic for many reasons. First, analyzing all genes separately and then either presenting them all as possible hypotheses or taking their consensus provides virtually no information concerning the relationships among these flies. Second, despite some evidence of incongruence, there are no clear delineations among the various gene partitions that separate only heterogeneous data. Third, to the extent that problematic genes can be identified, these genes have nearly the same information content, within a combined analysis framework, as the remaining nonproblematic genes. Our data suggest that significant incongruence among data partitions may be isolated to specific relationships and the "false" signal creating this incongruence is most likely to be overcome by a simultaneous analysis. We present a new method, partitioned Bremer support, for examining the contribution of a particular data partition to the topological support of the simultaneous analysis tree.  相似文献   

17.
We used the supertree approach of matrix representation with parsimony to reconstruct to date the most exhaustive (genus‐level) phylogeny of Cyprinidae. The supertree of Cyprinidae, representing 397 taxa (237 nominal genera) and 990 pseudocharacters, was well resolved (96%) through extended consensus majority rule, although 36 nodes (9.4%) were unsupported. The proportion of shared taxa among source trees was very low after calculation of the taxonomic coverage index (TCI = 0.059), which is proposed here as a more accurate alternative to the usual ratios calculated from the number of pseudo‐characters or source trees per taxon. We define a new index for the calculation of partitioned qualitative clade support, the partitioned rQS (prQS), which offers a straightforward visualization of the relative supports of source tree partitions at supertree nodes.The use of prQS showed that the molecular source tree partition contributed to most node supports within the supertree of Cyprinidae (73%, contra 21% for the morphological partition) and evidenced a fair proportion of conflict at nodes between the two partitions (21%), notably reflecting (i) the greater number and resolution of molecular source trees, and (ii) potential morphological convergences. Most of the higher‐level relationships within Cyprinidae were supported by both morphological and molecular source tree partitions. Our supertree showed a well‐supported dichotomy between a clade consisting of a ‘barbine’ + ‘rasborine’ lineage, sister group to (Barbinae [paraphyletic], (Cyprininae, Labeoninae)), and a clade consisting of other rasborines (large polytomy) and the two monophyletic groups ((Tincinae, Tanichthys), (Ecocarpia, (Acheilognathinae, (Gobioninae, Leuciscinae)))) and (Squaliobarbinae, (Xenocyprinae, Cultrinae)). Through the non‐monophyly of almost all the traditional subfamilies of Cyprinidae and 34 genera, our supertree exemplified the taxonomic chaos that reigns in the classification of the family. It also highlighted that further efforts should aim at increasing taxonomic sampling and generating alternative phylogenetic signals, notably for the still poorly apprehended Tincinae, Squaliobarbinae, Acheilognathinae, Gobioninae, and Rasborinae, the latter representing a key taxon for the understanding of early cyprinid evolution. Our supertree also proved useful for testing macro‐evolutionary scenarios at a wide taxonomic scale. Ancestral reconstructions using linear parsimony confirmed that the Oriental tropical region was the centre of origin of Cyprinidae, and identified three Oriental‐to‐Palaearctic, two Palaearctic‐to‐Nearctic, and one Oriental‐to‐Afrotropical major migration events. On the other hand, we almost completely rejected the hypothesis of presence of barbels as a plesiomorphic condition within Cyprinidae (although ambiguous for maxillary barbels of the Barbinae‐Cyprininae type). The supertree of Cyprinidae serves as a basis to discuss the applications and bias of the newly proposed prQS, to provide future guidelines for a better achievement of cyprinid phylogeny, and to elaborate further on inter‐continental migrations and the adaptive value of barbels.  相似文献   

18.
A phylogenetic analysis of the tribe Liparocephalini Fenyes is presented based on morphological and molecular characters. The data set comprised 50 adult morphological characters, partial COI (907 bp), COII (366 bp) and 12S rDNA (325–355 bp), and nearly complete sequences of 18S rDNA (1768–1902 bp) for 21 species. Eighteen species of liparocephaline beetles from all eight genera and three outgroups, are included. The sequences were analysed separately and simultaneously with morphological characters by direct optimization in the program POY4 and by partitioned Bayesian analysis for the combined data. The direct optimization (DO) tree for the combined data under equal weighting, which also shows a minimum incongruence length difference value, resulted in a monophyletic Liparocephalini with the following patterns of phylogenetic relationships (outgroup ((Baeostethus, Ianmoorea) (Paramblopusa ((Amblopusa, Halorhadinus) (Liparocephalus, Diaulota))))). A sensitivity analysis using 16 different parameter sets for the combined data shows the monophyly of the liparocephalines and all its genera under all parameter sets. Bayesian analysis resulted in topological differences in comparison with the DO tree under equal weighting only in the position of the genus Paramblopusa and clade (Amblopusa + Halorhadinus), which were reversed. Historical biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini are discussed. Based on the biogeographical analyses, we hypothesize that the ancestor of the Liparocephalini occurred along the Panthallassan Ocean, the direct antecedent of the Pacific Ocean, followed by repeated dispersals to the Nearctic from the Palearctic. We also hypothesize that ancestors of the Liparocephalini appear to have arisen in the littoral zone of beaches and then colonized rocky reef areas in the low tidal zone later through high‐ to mid‐tide zones. © The Willi Hennig Society 2009.  相似文献   

19.
Macroptilium (Benth.) Urban (Phaseoleae, Papilionoideae, Leguminosae) is an American genus of legumes, belonging to subtribe Phaseolinae along with other economically important genera, such as Vigna Savi and Phaseolus L. (the common bean genus). Cladistic analyses based on morphological, biochemical (storage seed proteins) and molecular (nuclear and plastid DNA sequences) data were performed on the 18 species currently ascribed to the genus, exploring several character weighting strategies. Equal weights, implied weighting and different transversion/transition costs were applied. The three data sets were first analyzed with separate partitions, and then combined into a single matrix. This study is the first one to analyze all the species of the genus from a cladistic point of view. In all the most parsimonious trees obtained, Macroptilium is monophyletic with excellent support values. Two monophyletic clades are recovered in almost all the analyses. Both are compound by nine species, and they constitute two sections of Macroptilium. Several interspecific relationships inside the genus are discussed. © The Willi Hennig Society 2007.  相似文献   

20.
We compared four approaches for analyzing three data sets derived from staphylinoid beetles, a superfamily whose known species diversity is roughly comparable to that of vertebrates. One data set is derived from adult morphology and the two molecular data sets are from 12S ribosomal RNA and cytochrome b mitochondrial DNA. We found that taxonomic congruence following conditional data combination, herein called compatible evidence (CE), resolved more nodes compatible with an initial conservative hypothesis than did total evidence (TE), conditional data combination (CDC), or taxonomic congruence (TC). CE sets a base of nodes obtained by CDC analysis and then investigates what further agreement may arise in a universe where these nodes are accepted as given. We suggest that CE75-75 may be appropriate for future studies that aim to both generate a well-corroborated tree and investigate conflicts between data sets, partitions, and characters. CE75-75 is a 75% bootstrap consensus CDC tree followed by combinable-component consensus of a 75% bootstrap consensus of each homogeneous set of partitions having hierarchical structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号