首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The regB gene, from the bacteriophage T4, codes for an endoribonuclease that controls the expression of a number of phage early genes. The RegB protein cleaves its mRNA substrates with an almost absolute specificity in the middle of the tertranucleotide GGAG, making it a unique well-defined restriction endoribonuclease. This striking protein has no homology to any known RNase and its catalytic mechanism has never been investigated. Here, we show, using 31P nuclear magnetic resonance (NMR), that RegB produces a cyclic 2′,3′-phosphodiester product. In order to determine the residues crucial for its activity, we prepared all the histidine-to- alanine point mutants of RegB. The activity of these mutants was characterized both in vivo and in vitro. In addition, their binding capability was quantified by surface plasmon resonance and their structural integrity was probed by 1H/15N NMR correlation spectroscopy. The results obtained show that only the H48A and the H68A substitutions significantly reduce RegB activity without changing its ability to bind the substrate or affecting its overall structure. Altogether, our results define RegB as a new cyclizing RNase and present His48 and His68 as potent catalytic residues. The effect of the in vivo selected R52L mutation is also described and discussed.  相似文献   

3.
In recent years, a large number of solid-state nuclear magnetic resonance (NMR) techniques have been developed and applied to the study of fully or significantly isotopically labelled ((13)C, (15)N or (13)C/(15)N) biomolecules. In the past few years, the first structures of (13)C/(15)N-labelled peptides, Gly-Ile and Met-Leu-Phe, and a protein, Src-homology 3 domain, were solved using magic-angle spinning NMR, without recourse to any structural information obtained from other methods. This progress has been made possible by the development of NMR experiments to assign solid-state spectra and experiments to extract distance and orientational information. Another key aspect to the success of solid-state NMR is the advances made in sample preparation. These improvements will be reviewed in this contribution. Future prospects for the application of solid-state NMR to interesting biological questions will also briefly be discussed.  相似文献   

4.
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.  相似文献   

5.
3,4-Dihydroxy-2-butanone 4-phosphate synthase catalyses the release of C-4 from the substrate, ribulose phosphate, via a complex series of rearrangement reactions. The cognate ribB gene of Escherichia coli was hyperexpressed in a recombinant E. coli strain. The protein was shown to be a 46-kDa homodimer by hydrodynamic analysis. A variety of protein samples labelled with different grades of 13C, 15N and 2H, i.e. one with 100% 2H and 15N, one with 75% 2H, 99% 13C, 15N, and one with 100% 2H, 99% 13C,15N were prepared. Despite the large molecular size, 2- and 3-dimensional NMR spectra of reasonable quality were obtained. Attempts at the assignment of individual 13C, 15N and 1H signals show, in principle, the feasibility of structure determination. The number of NMR signals shows unequivocally that the homodimeric protein obeys strict C2 symmetry.  相似文献   

6.
The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13C or 1H detection, have very narrow line widths (0.40–0.60 ppm for 13C, 0.11–0.15 ppm for 1H, and 0.46–0.64 ppm for 15N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1H-detected solid-state NMR 1H/15N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1H/15N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.  相似文献   

7.
The FF domain from the human protein HYPA/FBP11 folds via a low-energy on-pathway intermediate (I). Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by (15)N, (13)C(alpha) and methyl(13)C Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by (1)H/(2)H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by (15)N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U<-->I<-->F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone (15)N, (13)C(alpha) and side-chain methyl (13)C chemical shifts, with further information from protection factors for the backbone amide groups from (1)H/(2)H-exchange. Notably, helices H1-H3 are at least partially formed in I, while helix H4 is largely disordered. Chemical shift differences for the methyl (13)C nuclei suggest a paucity of stable, native-like hydrophobic interactions in I. These data are consistent with Phi-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and Phi data can elucidate whole experimental folding pathways.  相似文献   

8.
The global fold of maltose-binding protein in complex with the substrate beta-cyclodextrin was determined by solution NMR methods. The two-domain protein is comprised of a single polypeptide chain of 370 residues, with a molecular mass of 42 kDa. Distance information in the form of H(N)-H(N), H(N)-CH(3) and CH(3)-CH(3) NOEs was recorded on (15)N, (2)H and (15)N, (13)C, (2)H-labeled proteins with methyl protonation in Val, Leu, and Ile (C(delta1) only) residues. Distances to methyl protons, critical for the structure determination, comprised 77 % of the long-range restraints. Initial structures were calculated on the basis of 1943 NOEs, 48 hydrogen bond and 555 dihedral angle restraints. A global pair-wise backbone rmsd of 5.5 A was obtained for these initial structures with rmsd values for the N and C domains of 2.4 and 3.8 A, respectively. Direct refinement against one-bond (1)H(N)-(15)N, (13)C(alpha)-(13)CO, (15)N-(13)CO, two-bond (1)H(N)-(13)CO and three-bond (1)H(N)-(13)C(alpha) dipolar couplings resulted in structures with large numbers of dipolar restraint violations. As an alternative to direct refinement against measured dipolar couplings we have developed an approach where discrete orientations are calculated for each peptide plane on the basis of the dipolar couplings described above. The orientation which best matches that in initial NMR structures calculated from NOE and dihedral angle restraints exclusively is used to refine further the structures using a new module written for CNS. Modeling studies from four different proteins with diverse structural motifs establishes the utility of the methodology. When applied to experimental data recorded on MBP the precision of the family of structures generated improves from 5.5 to 2.2 A, while the rmsd with respect to the X-ray structure (1dmb) is reduced from 5.1 to 3.3 A.  相似文献   

9.
10.
Monomeric solution structure of the prototypical 'C' chemokine lymphotactin   总被引:1,自引:0,他引:1  
Lymphotactin, the sole identified member of the C class of chemokines, specifically attracts T lymphocytes and natural killer cells. This 93-residue protein lacks 2 of the 4 conserved cysteine residues characteristic of the other 3 classes of chemokines and possesses an extended carboxyl terminus, which is required for chemotactic activity. We have determined the three-dimensional solution structure of recombinant human lymphotactin by NMR spectroscopy. Under the conditions used for the structure determination, lymphotactin was predominantly monomeric; however, pulsed field gradient NMR self-diffusion measurements and analytical ultracentrifugation revealed evidence of dimer formation. Sequence-specific chemical shift assignments were determined through analysis of two- and three-dimensional NMR spectra of (15)N- and (13)C/(15)N-enriched protein samples. Input for the torsion angle dynamics calculations used in determining the structure included 1258 unique NOE-derived distance constraints and 60 dihedral angle constraints obtained from chemical-shift-based searching of a protein conformational database. The ensemble of 20 structures chosen to represent the structure had backbone and heavy atom rms deviations of 0.46 +/- 0.11 and 1.02 +/- 0.14 A, respectively. The results revealed that human lymphotactin adopts the conserved chemokine fold, which is characterized by a three-stranded antiparallel beta-sheet and a C-terminal alpha-helix. Two regions are dynamically disordered as evidenced by (1)H and (13)C chemical shifts and [(15)N]-(1)H NOEs: residues 1-9 of the amino terminus and residues 69-93 of the C-terminal extension. A functional role for the C-terminal extension, which is unique to lymphotactin, remains to be elucidated.  相似文献   

11.
Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution [15N-1H]- and [13C-1H]-methyl-TROSY NMR spectra with a 52?kDa membrane protein that putatively has 12 transmembrane-spanning α-helices and used the spectra to detect inhibitor binding. The protein reconstituted in DDM detergent micelles retained structural and functional integrity for at least 48?h at a temperature of 25?°C as demonstrated by circular dichroism spectroscopy and fluorescence measurements of ligand binding, respectively. Selective labelling of tryptophan residues reproducibly gave 12 resolved signals for tryptophan 15N backbone positions and also resolved signals for 15N side-chain positions. For improved sensitivity isoleucine, leucine and valine (ILV) methyl-labelled protein was prepared, which produced unexpectedly well resolved [13C-1H]-methyl-TROSY spectra showing clear signals for the majority of methyl groups. The GalP/GLUT inhibitor forskolin was added to the ILV-labelled sample inducing a pronounced chemical shift change in one Ile residue and more subtle changes in other methyl groups. This work demonstrates that high-resolution TROSY NMR spectra can be achieved with large complex α-helical membrane proteins without the use of elevated temperatures. This is a prerequisite to applying further labelling strategies and NMR experiments for measurement of dynamics, structure elucidation and use of the spectra to screen ligand binding.  相似文献   

12.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) of Escherichia coli. Virtually complete (98%) backbone 1H, 15N, and 13C nuclear magnetic resonance (NMR) signal assignments were determined by using a battery of triple-resonance three-dimensional (3D) NMR pulse sequences. In addition, nearly complete (1H, 95%; 13C, 85%) side-chain 1H and 13C signal assignments were obtained from an analysis of 3D 13C HCCH-COSY and HCCH-TOCSY spectra. These experiments rely almost exclusively upon one- and two-bond J couplings to transfer magnetization and to correlate proton and heteronuclear NMR signals. Hence, essentially complete signal assignments of this 168-residue protein were made without any assumptions regarding secondary structure and without the aid of a crystal structure, which is not yet available. Moreover, only three samples, one uniformly 15N-enriched, one uniformly 15N/13C-enriched, and one containing a few types of amino acids labeled with 15N and/or 13C, were needed to make the assignments. The backbone assignments together with the 3D 15N NOESY-HMQC and 13C NOESY-HMQC data have provided extensive information about the secondary structure of this protein [Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y., & Roseman, S (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3479-3488]. The nearly complete set of backbone and side-chain atom assignments reported herein provide a basis for studies of the three-dimensional structure and dynamics of IIIGlc as well as its interactions with a variety of membrane and cytoplasmic proteins.  相似文献   

13.
High-throughput NMR structural biology can play an important role in structural genomics. We report an automated procedure for high-throughput NMR resonance assignment for a protein of known structure, or of a homologous structure. These assignments are a prerequisite for probing protein-protein interactions, protein-ligand binding, and dynamics by NMR. Assignments are also the starting point for structure determination and refinement. A new algorithm, called Nuclear Vector Replacement (NVR) is introduced to compute assignments that optimally correlate experimentally measured NH residual dipolar couplings (RDCs) to a given a priori whole-protein 3D structural model. The algorithm requires only uniform( 15)N-labeling of the protein and processes unassigned H(N)-(15)N HSQC spectra, H(N)-(15)N RDCs, and sparse H(N)-H(N) NOE's (d(NN)s), all of which can be acquired in a fraction of the time needed to record the traditional suite of experiments used to perform resonance assignments. NVR runs in minutes and efficiently assigns the (H(N),(15)N) backbone resonances as well as the d(NN)s of the 3D (15)N-NOESY spectrum, in O(n(3)) time. The algorithm is demonstrated on NMR data from a 76-residue protein, human ubiquitin, matched to four structures, including one mutant (homolog), determined either by x-ray crystallography or by different NMR experiments (without RDCs). NVR achieves an assignment accuracy of 92-100%. We further demonstrate the feasibility of our algorithm for different and larger proteins, using NMR data for hen lysozyme (129 residues, 97-100% accuracy) and streptococcal protein G (56 residues, 100% accuracy), matched to a variety of 3D structural models. Finally, we extend NVR to a second application, 3D structural homology detection, and demonstrate that NVR is able to identify structural homologies between proteins with remote amino acid sequences using a database of structural models.  相似文献   

14.
Almost complete sequence specific 1H, 13C and 15N resonance assignments of S114A mutant of UVI31+ from Chlamydomonas reinhardtii are reported. The cDNA of S114A mutant of UVI31+ was cloned from a eukaryotic green algae (C. reinhardtii) and overexpressed in E.coli from where the protein was purified to homogeneity. The point mutation S114A in UVI31+ reduces its DNA endonuclease activity substantially as compared with its wild type. As a prelude to the structural characterization of S114A mutant of UVI31+, we report here complete sequence-specific 1H, 13C and 15N NMR assignments.  相似文献   

15.
Residues of DNA polymerase beta (beta-Pol) that interact with the DNA repair protein XRCC1 have been determined by NMR chemical shift mapping (CSM) and mutagenesis. 15N/(13)C/(2)H/(1)H,(13)C-methyl(Leu,Ile,Val)-labeled beta-Pol palm-thumb domain was used for assignments of the 1H, 15N, and 13C resonances used for CSM of the palm-thumb on forming the 40 kDa complex with the XRCC1 N-terminal domain (NTD). Large chemical shift changes were observed in the thumb on complexation. 15N relaxation data indicate reduction in high-frequency motion for a thumb loop and three palm turn/loops, which showed concomitant chemical shift changes on complexation. A deltaV303-V306 deletion and an L301R/V303R/V306R triple mutation abolished complex formation due to loss in hydrophobicity. In an updated model, the thumb-loop of beta-Pol contacts an edge/face region of the beta sheet of the XRCC1 NTD, while the beta-Pol palm weakly contacts the alpha2 helix.  相似文献   

16.
The refolding of barstar, the intracellular inhibitor of barnase, is dominated by the slow formation of a cis peptidyl prolyl bond in the native protein. The triple mutant C40/82A P27A in which two cysteine residues and one trans proline were replaced by alanine was used as model system to investigate the kinetics and structural consequences of the trans/cis interconversion of Pro48. One- and two-dimensional real-time NMR spectroscopy was used to follow the trans/cis interconversion after folding was initiated by rapid dilution of the urea denatured protein. Series of 1H, 15N HSQC spectra acquired with and without the addition of peptidyl prolyl isomerase unambiguously revealed the accumulation of a transient trans-Pro48 intermediate within the dead time of the experiment. Subtle chemical shift differences between the native state and the intermediate spectra indicate that the intermediate is predominantly native-like with a local rearrangement in the Pro48 loop and in the beta-sheet region including residues Tyr47, Ala82, Thr85, and Val50.  相似文献   

17.
Metcalfe EE  Traaseth NJ  Veglia G 《Biochemistry》2005,44(11):4386-4396
Phospholamban (PLB) is a 52 amino acid membrane-endogenous regulator of the sarco(endo)plasmic calcium adenosinetriphosphatase (SERCA) in cardiac muscle. PLB's phosphorylation and dephosphorylation at S16 modulate its regulatory effect on SERCA by an undetermined mechanism. In this paper, we use multidimensional (1)H/(15)N solution NMR methods to establish the structural and dynamics basis for PLB's control of SERCA upon S16 phosphorylation. For our studies, we use a monomeric, fully active mutant of PLB, where C36, C41, and C46 have been mutated to A36, F41, and A46, respectively. Our data show that phosphorylation disrupts the "L-shaped" structure of monomeric PLB, causing significant unwinding of both the cytoplasmic helix (domain Ia) and the short loop (residues 17-21) connecting this domain to the transmembrane helix (domains Ib and II). Concomitant with this conformational transition, we also find pronounced changes in both the pico- to nanosecond and the micro- to millisecond time scale dynamics. The (1)H/(15)N heteronuclear NOE values for residues 1-25 are significantly lower than those of unphosphorylated PLB, with slightly lower NOE values in the transmembrane domain, reflecting less restricted motion throughout the whole protein. These data are supported by the faster spin-lattice relaxation rates (R(1)) present in both the cytoplasmic and loop regions and by the enhanced spin-spin transverse relaxation rates (R(2)) observed in the transmembrane domain. These results demonstrate that while S16 phosphorylation induces a localized structural transition, changes in PLB's backbone dynamics are propagated throughout the protein backbone. We propose that the regulatory mechanism of PLB phosphorylation involves an order-to-disorder transition, resulting in a decrease in the PLB inhibition of SERCA.  相似文献   

18.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

19.
20.
The adrenal ferredoxin (adrenodoxin, Adx) is an acidic 14.4-kDa [2Fe-2S] ferredoxin that belongs to the vertebrate ferredoxin family. It is involved in the electron transfer from the flavoenzyme NADPH-adrenodoxin-reductase to cytochromes P-450(scc) and P-450(11)(beta). The interaction between the redox partners during electron transport has not yet been fully established. Determining the tertiary structure of an electron-transfer protein may be very helpful in understanding the transport mechanism. In the present work, we report a structural study on the oxidized and reduced forms of bovine adrenodoxin (bAdx) in solution using high-resolution NMR spectroscopy. The protein was produced in Escherichia coli and singly or doubly labeled with (15)N or (13)C/(15)N, respectively. Approximately 70 and 75% of the (15)N, (13)C, and (1)H resonances could be assigned for the reduced and the oxidized bAdx, respectively. The secondary and tertiary structures of the reduced and oxidized states were determined using NOE distance information. (1)H(N)-T(1) relaxation times of certain residues were used to obtain additional distance constraints to the [2Fe-2S] cluster. The results suggest that the solution structure of oxidized Adx is quite similar to the X-ray structure. However, structural changes occur upon reduction of the [2Fe-2S] cluster, as indicated by NMR measurements. It could be shown that these conformational changes, especially in the C-terminal region, cause the dissociation of the Adx dimer upon reduction. A new electron transport mechanism proceeding via a modified shuttle mechanism, with both monomers and dimers acting as electron carriers, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号