首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin, the major active component of the spice turmeric, is recognised as a safe compound with great potential for cancer chemoprevention and cancer therapy. It induces apoptosis, but its initiation mechanism remains poorly understood. Curcumin has been assessed on the human cancer cell lines, TK-10, MCF-7 and UACC-62, and their IC50 values were 12.16, 3.63, 4.28 microM respectively. The possibility of this compound being a topoisomerase II poison has also been studied and it was found that 50 microM of curcumin is active in a similar fashion to the antineoplastic agent etoposide. These results point to DNA damage induced by topoisomerase II poisoning as a possible mechanism by which curcumin initiates apoptosis, and increase the evidence suggesting its possible use in cancer therapy.  相似文献   

2.
TAS-103 is a novel anticancer drug that kills cells by increasing levels of DNA cleavage mediated by topoisomerase II. While most drugs that stimulate topoisomerase II-mediated DNA scission (i.e., topoisomerase II poisons) also inhibit the catalytic activity of the enzyme, they typically do so only at concentrations above the clinical range. TAS-103 is unusual in that it reportedly inhibits the catalytic activity of both topoisomerase I and II and does so at physiologically relevant concentrations [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. Without a topoisomerase activity to relieve accumulating torsional stress, the DNA tracking systems that promote the action of TAS-103 as a topoisomerase II poison would be undermined. Therefore, the effects of TAS-103 on the catalytic activity of topoisomerase I and II were characterized. DNA binding and unwinding assays indicate that the drug intercalates into DNA with an apparent dissociation constant of approximately 2.2 microM. Furthermore, DNA strand passage assays with mammalian topoisomerase I indicate that TAS-103 does not inhibit the catalytic activity of the type I enzyme. Rather, the previously reported inhibition of topoisomerase I-catalyzed DNA relaxation results from a drug-induced alteration in the apparent topology of the nucleic acid substrate. TAS-103 does inhibit the catalytic activity of human topoisomerase IIalpha, apparently by blocking the DNA religation reaction of the enzyme. The lack of inhibition of topoisomerase I catalytic activity by TAS-103 explains how the drug is able to function as a topoisomerase II poison in treated cells.  相似文献   

3.
Ciprofloxacin (CF), a fluoroquinolone widely used as a potent antimicrobial drug, was evaluated in vivo in mouse bone marrow cells for its ability to induce clastogenicity and DNA damage in terms of increased sister-chromatid exchange (SCE) frequencies. Doses of 0.6, 6 and 20 mg/kg body weight of CF given intraperitoneally induced a positive dose-dependent significant clastogenicity (trend test α ⩽ 0.05), though the effects were not specific for specific phases of the cell cycle.The DNA-damaging effect observed as increased SCE frequencies using doses of 0.15, 0.30, 0.60, 1.2 and 6 mg/kg body weight showed a significant dose-dependent increase (trend test α ⩽ 0.05; lowest effective concentration 1.2 mg/kg of body weight).Compared to a potent eukaryotic DNA topoisomerase type II poison, etoposide (VP-16, 0.5, 1 and 5 mg/kg body weight, given intraperitoneally), ciprofloxacin produced comparable dose-dependent SCE frequency increases. Ciprofloxacin was postulated to be specific for the target DNA gyrase, the prokaryotic homologue of DNA topoisomerase type II enzyme. The present paper along with the existing earlier data strongly suggest that topoisomerase type II and DNA gyrase are physiological targets for the drug action. In view of the present significant in vivo mammalian DNA topoisomerase type II-mediated genotoxicity and clastogenicity data, ciprofloxacin should be administered with caution.  相似文献   

4.
Interaction of a novel antitumor agent TAS-103 with DNA has been studied by a variety of methods including thermal melting study, UV-Visible spectroscopy, 1H- and 31P-NMR spectroscopy. Thermal melting study indicated that TAS-103 stabilizes the double stranded form of DNA and the relative binding strength of TAS-103 is equal to that of ethidium bromide (EtBr). UV-Visible spectroscopy demonstrated that titration curves are nearly identical with all DNA oligomers producing a hypochromic and hypsochromic effect. A hypsochromic effect of TAS-103 is differ from typical intercalators such as EtBr and Actinomycin D that exhibit a bathochromic effect. 1H- and 31P-NMR spectroscopy revealed that TAS-103 has mainly two binding modes. Major binding mode is outside binding and minor binding mode is intercalation.  相似文献   

5.
6.
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To understand the mechanism of irreversible trapping of the topo II-cleavable complex, we have investigated the reactivity of clerocidin per se towards DNA. We show here that the drug is able to nick negatively supercoiled plasmids. DNA cleavage by clerocidin in enzyme-free medium is due to the ability of the drug to form covalent adducts with guanines. Indeed, clerocidin was able to specifically react with short oligonucleotides when the guanines were unpaired and exposed as in bulges or in the single-strand form. The clerocidin epoxy group attacks the nitrogen at position 7 of guanines, leading to strand scission at the modified site. Our findings also demonstrate that trapping of topoisomerases by clerocidin is specific for type II enzymes. The guanine-alkylating ability of clerocidin suggests an unprecedented mechanism of topo II poisoning, according to which the enzyme renders the drug reactive toward DNA by distorting the double-helical structure of the nucleic acid at the cleavage site.  相似文献   

7.
8.
9.
Filamin-A, also called Actin Binding Protein-280, is not only an essential component of the cytoskeleton networks, but also serves as the scaffold in various signaling networks. It has been shown that filamin-A facilitates DNA repair and filamin-A proficient cells are more resistant to ionizing radiation, bleomycin, and cisplatin. In this study, we assessed the role of filamin-A in modulating cancer cell sensitivity to Topo II poisons, including etoposide and doxorubicin. Intriguingly, we found that cells with filamin-A expression are more sensitive to Topo II poisons than those with defective filamin-A, and filamin-A proficient xenograft melanomas have better response to etoposide treatment than the filamin-A deficient tumors. This is associated with more potent induction of DNA double strand breaks (DSBs) by Topo II poisons in filamin-A proficient cells than the deficient cells. Although the expression of filamin-A enables cells a slightly stronger capability to repair DSB, the net outcome is that filamin-A proficient cells bear more DSBs due to the significantly enhanced DSB induction by Topo II poisons in these cells. We further found that filamin-A proficient cells have increased drug influx and decreased drug efflux, suggesting that filamin-A modulates the intra-cellular drug kinetics of Topo II poisons to facilitate the generation of DSB after Topo II poison exposure. These data suggest a novel function of filamin-A in regulating the pharmacokinetics of Topo II poisons, and that the status of filamin-A may be used as a prognostic marker for Topo II poisons based cancer treatments.  相似文献   

10.
Cline SD  Jones WR  Stone MP  Osheroff N 《Biochemistry》1999,38(47):15500-15507
Topoisomerase II is the target for several anticancer drugs that "poison" the enzyme and convert it to a cellular toxin by increasing topoisomerase II-mediated DNA cleavage. In addition to these "exogenous topoisomerase II poisons," DNA lesions such as abasic sites act as "endogenous poisons" of the enzyme. Drugs and lesions are believed to stimulate DNA scission by altering the structure of the double helix within the cleavage site of the enzyme. However, the structural alterations that enhance cleavage are unknown. Since abasic sites are an intrinsic part of the genetic material, they represent an attractive model to assess DNA distortions that lead to altered topoisomerase II function. Therefore, the structure of a double-stranded dodecamer containing a tetrahydrofuran apurinic lesion at the +2 position of a topoisomerase II DNA cleavage site was determined by NMR spectroscopy. Three major features distinguished the apurinic structure ( = 0.095) from that of wild-type ( = 0.077). First, loss of base stacking at the lesion collapsed the major groove and reduced the distance between the two scissile phosphodiester bonds. Second, the apurinic lesion induced a bend that was centered about the topoisomerase II cleavage site. Third, the base immediately opposite the lesion was extrahelical and relocated to the minor groove. All of these structural alterations have the potential to influence interactions between topoisomerase II and its DNA substrate.  相似文献   

11.
12.
DNA binding domain of Sp1 encompassing three Cys2His2-type Zn-finger motifs is cloned and expressed in E.coli. The Sp1 fragment shows metal-dependent folding and DNA binding. The Zn(II)-induced folding of the three fingers is probably cooperative. Release of one equivalent of Zn decreases but does not abolish DNA binding activity of Sp1.  相似文献   

13.
Topoisomerase I-mediated DNA damage induced by camptothecin has been shown to induce rapid small ubiquitin-related modifier (SUMO)-1 conjugation to topoisomerase I. In the current study, we show that topoisomerase II-mediated DNA damage induced by teniposide (VM-26) results in the formation of high molecular weight conjugates of both topoisomerase IIalpha and IIbeta isozymes in HeLa cells. Immunological characterization of these conjugates suggests that both topoisomerase IIalpha and IIbeta isozymes are conjugated to SUMO-1. The involvement of SUMO-1/UBC9 in the modification of topoisomerase II isozymes is also supported by the demonstration of physical interaction between topoisomerase II and SUMO-1/UBC9. Surprisingly, ICRF-193, which does not induce topoisomerase II-mediated DNA damage but traps topoisomerase II into a circular clamp conformation, is also shown to induce similar SUMO-1 conjugation to topoisomerase II isozymes. In addition, we show that both oxidative and heat shock stresses, which can cause protein damage, rapidly increase nuclear SUMO-1 conjugates. These studies raise the question on whether SUMO-1 conjugation to topoisomerases is an indirect result of a DNA damage response or a direct result because of protein conformational changes.  相似文献   

14.
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.  相似文献   

15.
The objective of our study was to investigate the self-association and DNA-binding properties of the DNA topoisomerases I (Topo I) and II (Topo II) dual inhibitor: 6-[[2-(dimethylamino)ethyl]amino]-3-hydroxy-7H-indeno[2,1-c]quinoline-7-one dihydrochloride (TAS-103), by means of 1H-NMR and 31P-NMR spectroscopy, structure computation techniques, thermal melting study, and UV-Visible spectroscopy. In aqueous solution, all chemical shifts of TAS-103 underwent upfield shifts depending with an increase in concentration. The two-dimensional (2D)-NMR spectra and structure computations indicated that TAS-103 self-associated through pi-pi stacking and hydrophobic interactions of the aromatic chromophores. Thermal melting indicated that the binding of TAS-103 to DNA with a potency equal to that of ethidium bromide (EtBr). The UV-Visible spectra of TAS-103 titrated by several DNA exhibited hypochromic and hypsochromic effects. The 31P-NMR spectrum of the 6:1 TAS-103/d(CGCGAATTCGCG)(2) complex showed two broadening signals. 2D-NMR spectra of the 1:1 TAS-103/d(CGCGAATTCGCG)(2) complex indicated that the chemical shift differences of the DNA are very small. However, those of the terminal region are relatively large. The chemical shift differences of TAS-103 showed that the proton resonances except H2 underwent downfield shifts. From these observations, we conclude that TAS-103 binds to DNA by two modes. The major binding mode is on the surface (outside binding) and the minor binding mode by intercalation.  相似文献   

16.
17.
18.
19.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号