首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we investigated the oxidative modification of histidine residues induced by peroxidase and thiol oxidase activities of bovine copper-zinc superoxide dismutase (Cu-ZnSOD) using NMR and pulse EPR spectroscopy. 1D NMR and 2D-NOESY were used to determine the oxidative damage at the Zn(II) and Cu(II) active sites as well as at distant histidines. Results indicate that during treatment of SOD with hydrogen peroxide (H(2)O(2)) or cysteine in the absence of bicarbonate anion (HCO(3)(-)), both exchangeable and nonexchangeable protons were affected. Both His-44 and His-46 in the Cu(II) active site were oxidized based on the disappearance of NOESY cross-peaks between CH and NH resonances of the imidazole rings. In the Zn(II) site, only His-69, which is closer to His-44, was oxidatively modified. However, addition of HCO(3)(-) protected the active site His residues. Instead, resonances assigned to the His-41 residue, 11 ? away from the Cu(II) site, were completely abolished during both HCO(3)(-)-stimulated peroxidase activity and thiol oxidase activity in the presence of HCO(3)(-) . Additionally, ESEEM/HYSCORE and ENDOR studies of SOD treated with peroxide/Cys in the absence of HCO(3)(-) revealed that hyperfine couplings to the distal and directly coordinated nitrogens of the His-44 and His-46 ligands at the Cu(II) active site were modified. In the presence of HCO(3)(-), these modifications were absent. HCO(3)(-)-mediated, selective oxidative modification of histidines in SOD may be relevant to understanding the molecular mechanism of SOD peroxidase and thiol oxidase activities.  相似文献   

2.
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.  相似文献   

3.
Anthranilate synthase is a glutamine amidotransferase that catalyzes the first reaction in tryptophan biosynthesis. Conserved amino acid residues likely to be essential for glutamine-dependent activity were identified by alignment of the glutamine amide transfer domains in four different enzymes: anthranilate synthase component II (AS II), p-aminobenzoate synthase component II, GMP synthetase, and carbamoyl-P synthetase. Conserved amino acids were mainly localized in three clusters. A single conserved histidine, AS II His-170, was replaced by tyrosine using site-directed mutagenesis. Glutamine-dependent enzyme activity was undetectable in the Tyr-170 mutant, whereas the NH3-dependent activity was unchanged. Affinity labeling of AS II active site Cys-84 by 6-diazo-5-oxonorleucine was used to distinguish whether His-170 has a role in formation or in breakdown of the covalent glutaminyl-Cys-84 intermediate. The data favor the interpretation that His-170 functions as a general base to promote glutaminylation of Cys-84. Reversion analysis was consistent with a proposed role of His-170 in catalysis as opposed to a structural function. These experiments demonstrate the application of combining sequence analyses to identify conserved, possibly functional amino acids, site-directed mutagenesis to replace candidate amino acids, and protein chemistry for analysis of mutationally altered proteins, a regimen that can provide new insights into enzyme function.  相似文献   

4.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

5.
The assignment of resolved hyperfine-shifted resonances in high-spin resting state horseradish peroxidase (HRP) and its double-oxidized reactive form, compound I (HRP-I), has been carried out by using the nuclear Overhauser effect (NOE) starting with the known heme methyl assignments in each species. In spite of the efficient spin-lattice relaxation and very broad resonances, significant NOEs were observed for all neighboring pyrrole substituents, which allowed the assignment of the elusive propionate alpha-methylene protons. In the resting state HRP, this leads directly to the identity of the proximal His-170 H beta peaks. The determination that one of the most strongly contact-shifted single proton resonances in HRP-I does not arise from the porphyrin dictates that the cation radical must be delocalized to some amino acid residue. The relaxation properties of the non-heme contact-shifted signal in HRP-I support the identity of this contributing residue as the proximal His-170. Detailed analysis of changes in both contact shift pattern and NOEs indicates that compound I formation is accompanied by a approximately 5 degree rotation of the 6-propionate group. The implication of a porphyrin cation radical delocalized over the proximal histidine for the proposed location of the solely amino acid centered radical in compound I of related cytochrome c peroxidase is discussed.  相似文献   

6.
J D De Caro  A A Guidoni  J J Bonicel  M Rovery 《Biochimie》1989,71(11-12):1211-1219
The activities of porcine pancreatic lipase (449 amino acid residues) toward two different substrates, p-nitrophenylacetate and tributyrylglycerol, and their dependence on histidine ethoxyformylation were studied. In parallel, the ethoxyformylation of the lipase fragment constituting the C-terminal sequence of lipase (residues 336 to 449) was also investigated. This fragment was found to have retained the ability of lipase to catalyse p-nitrophenylacetate hydrolysis. The first histidine to react either in lipase or in the lipase fragment was His-354. The activities of the two compounds toward p-nitrophenyl-acetate were lost but that of the enzyme toward tributyrylglycerol was almost entirely retained. When a larger excess of ethoxyformic anhydride was used for the lipase reaction, 2.8 histidine residues were ethoxyformylated and characterised as His-354, His-156 and His-75, which resulted in an 85% inhibition of the tributyrylglycerol hydrolysis by the enzyme. Hydroxylamine treatment reactivated most of the lipase and lipase fragment. This is the first demonstration that the two lipase activities are not associated with the same active site. The loss of activity toward triacylglycerol hydrolysis suggests that His-156 and/or His-75 belong(s) to the active site or that a conformational change resulting from the ethoxyformylation renders the lipase inactive.  相似文献   

7.
The literature data on the activity of histidine-15 modified hen egg white lysozyme are conflicting: the modified enzyme is reported to have more activity, similar activity or less activity by different authors. Amino acid analysis had shown modification of the single His-15. Detailed activity studies on His-15-modified (by iodoacetic acid or diethyl pyrocarbonate) lysozyme have shown that the contradicting reports are due to the specific choices of ionic strengths and cell wall substrate concentrations and can be attributed to the substrate being negatively charged. Our analysis suggests that even though histidine-15 is far removed from the active site of lysozyme, its chemical modification or binding of the negatively-charged substrate near it, changes the conformation around the active site. However, the change in the optimum activity on chemically modifying His-15 is small.  相似文献   

8.
Cytochrome c derivatives modified with a photoactivatable arylazido group in selected lysine residues were irradiated in the presence of cytochrome c peroxidase (EC 1.11.1.5). A derivative modified at lysine 13 was able to cross-link to the enzyme and inhibit electron transfer activity. Complete inhibition of cytochrome c peroxidase activity was obtained when 1 mol of cytochrome c was covalently bound per mol of cytochrome c peroxidase. Chemical cleavage of the covalent complex has been used for a preliminary characterization of the site of cross-linking of cytochrome c to cytochrome c peroxidase. This linkage site was localized to the NH2 terminal part of cytochrome c peroxidase including residues 1-51.  相似文献   

9.
We report the 2.4 A crystal structure for lipoamide dehydrogenase encoded by lpdC from Mycobacterium tuberculosis. Based on the Lpd structure and sequence alignment between bacterial and eukaryotic Lpd sequences, we generated single point mutations in Lpd and assayed the resulting proteins for their ability to catalyze lipoamide reduction/oxidation alone and in complex with other proteins that participate in pyruvate dehydrogenase and peroxidase activities. The results suggest that amino acid residues conserved in mycobacterial species but not conserved in eukaryotic Lpd family members modulate either or both activities and include Arg-93, His-98, Lys-103, and His-386. In addition, Arg-93 and His-386 are involved in forming both "open" and "closed" active site conformations, suggesting that these residues play a role in dynamically regulating Lpd function. Taken together, these data suggest protein surfaces that should be considered while developing strategies for inhibiting this enzyme.  相似文献   

10.
The shikimate pathway enzyme 3-dehydroquinase is very susceptible to inactivation by the group-specific reagent diethyl pyrocarbonate (DEP). Inactivation follows pseudo first-order kinetics and exhibits a second-order rate constant of 148.5 M-1 min-1. An equilibrium mixture of substrate and product substantially protects against inactivation by DEP, suggesting that residues within the active site are being modified. Complete inactivation of the enzyme correlates with the modification of 6 histidine residues/subunit as determined by difference spectroscopy at 240 nm. Enzymic activity can be restored by hydroxylamine treatment, which is also consistent with the modification occurring at histidine residues. Using the kinetic method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558), it was shown that modification of a single histidine residue leads to inactivation. Ligand protection experiments also indicated that 1 histidine residue was protected from DEP modification. pH studies show that the pKa for this inactivation is 6.18, which is identical to the single pKa determined from the pH/log Vmax profile for the enzyme. A single active site peptide was identified by differential peptide mapping in the presence and absence of ligand. This peptide was found to comprise residues 141-158; of the 2 histidines in this peptide (His-143 and His-146), only one, His-143, is conserved among all type I dehydroquinases. We propose that His-143 is the active site histidine responsible for DEP-mediated inactivation of dehydroquinase and is a good candidate for the general base that has been postulated to participate in the mechanism of this enzyme.  相似文献   

11.
Excellular hemoglobin is an extremely active oxidant of low-density lipoproteins (LDL), a phenomenon explained so far by different mechanisms. In this study, we analyzed the mechanism of met-hemoglobin oxidability by comparing its mode of operation with other hemoproteins, met-myoglobin and horseradish peroxidase (HRP) or with free hemin. The kinetics of met-hemoglobin activity toward LDL lipids and protein differed from that of met-myoglobin and HRP, both quantitatively and qualitatively. Those differences were further clarified by analyzing heme transfer from the above-mentioned hemoproteins to LDL. It appeared that met-hemoglobin transferred most of its hemin to LDL, and the presence of H(2)O(2) accelerated the process. In contrast, met-myoglobin partially released hemin, but only in the presence of H(2)O(2), while HRP could not transfer heme at all. The minor amount of hemin transferred from met-myoglobin to LDL sufficed to trigger ApoB oxidation, forming covalent aggregates via inter-bityrosines. This indicated that heme bound to high affinity site(s) is responsible for oxidation. LDL components providing the sites were analyzed by binding heme-CO monomers to LDL. Soret spectra revealed that the high affinity site of monomeric hemin is located on the LDL protein, ApoB. The complex heme-CO-ApoB underwent instantaneous oxidation to hemin-ApoB, and the bound hemin then slowly disintegrated in conjunction with LDL oxidation. Hemopexin prevented LDL oxidation by trapping hemoprotein transferable heme. We concluded that met-hemoglobin exerts its oxidative activity on LDL via transfer of heme, which serves as a vehicle for iron insertion into the LDL protein, leading to formation of atherogenic LDL aggregates.  相似文献   

12.
The sequence similarity with bacterial neutral sphingomyelinase resulted in the isolation of putative mammalian counterparts and, subsequently, identification of similar molecules in a number of other eukaryotic organisms. Based on sequence similarities and previous characterization of the mammalian enzymes, we have chemically modified specific residues and performed site-directed mutagenesis in order to identify critical catalytic residues and determinants for membrane localization. Modification of histidine residues and the substrate protection experiments demonstrated the presence of reactive histidine residues within the active site. Site directed mutagenesis suggested an essential role in catalysis for two histidine residues (His-136 and His-272), which are conserved in all sequences. Mutations of two additional histidines (His-138 and His-151), conserved only in eukaryotes, resulted in reduced neutral sphingomyelinase activity. In addition to sphingomyelin, the enzyme also hydrolyzed lysophosphatidylcholine. Exposure to an oxidizing environment or modification of cysteine residues using several specific compounds also inactivated the enzyme. Site-directed mutagenesis of eight cysteine residues and gel-shift analysis demonstrated that these residues did not participate in the catalytic reaction and suggested the involvement of cysteines in the formation/breakage of disulfide bonds, which could underlie the reversible inactivation by the oxidizing compounds. Cellular localization studies of a series of deletion mutants, expressed as green fluorescent protein fusion proteins, demonstrated that the transmembrane region contains determinants for the endoplasmic reticulum localization.  相似文献   

13.
Chondroitinase B from Flavobacterium heparinum is the only known lyase that cleaves the glycosaminoglycan, dermatan sulfate (DS), as its sole substrate. A recent co-crystal structure of chondroitinase B with a disaccharide product of DS depolymerization has provided some insight into the location of the active site and suggested potential roles of some active site residues in substrate binding and catalysis. However, this co-crystal structure was not representative of the actual enzyme-substrate complex, because the disaccharide product did not have the right length or the chemical structure of the minimal substrate (tetrasaccharide) involved in catalysis. Therefore, only a limited picture of the functional role of active site residues in DS depolymerization was presented in previous structural studies. In this study, by docking a DS tetrasaccharide into the proposed active site of the enzyme, we have identified novel roles of specific active site amino acids in the catalytic function of chondroitinase B. Our conformational analysis also revealed a unique, symmetrical arrangement of active site amino acids that may impinge on the catalytic mechanism of action of chondroitinase B. The catalytic residues Lys-250, Arg-271, His-272, and Glu-333 along with the substrate binding residues Arg-363 and Arg-364 were mutated using site-directed mutagenesis, and the kinetics and product profile of each mutant were compared with recombinant chondroitinase B. Mutating Lys-250 to alanine resulted in inactivation of the enzyme, potentially attributable to the role of the residue in stabilizing the carbanion intermediate formed during enzymatic catalysis. The His-272 and Glu-333 mutants showed diminished enzymatic activity that could be indicative of a possible role for one or both residues in the abstraction of the C-5 proton from the galactosamine. In addition, the Arg-364 mutant had an altered product profile after exhaustive digestion of DS, suggesting a role for this residue in defining the substrate specificity of chondroitinase B.  相似文献   

14.
Resonance Raman spectroscopy was used to interrogate the heme active site of horseradish peroxidase (HRP) lyophilized in the presence and absence of the lyoprotectant poly(ethylene glycol) (PEG; FW 5000; 0-80% w/w) suspended in acetone, chloroform, or acetonitrile. In aqueous solution, Fe(3+)HRP is characterized by a five-coordinate high-spin (5-c HS) heme system. The structure of the heme-active site of HRP in all solvents is perturbed by co-lyophilization of HRP with PEG. Heme active site structural changes are consistent with coordination of water in the distal axial coordination site of the ferric heme iron and disruption of the hydrogen-bond network when the protein is lyophilized in the presence of PEG (>or=60% w/w) in all of the solvent systems studied. Similar active site structural changes were previously observed for HRP in benzene and attributed to a change in the reaction mechanism for HRP in benzene. (Mabrouk, P. A.; Spiro, T. G. J. Am. Chem. Soc. 1998, 120, 10303-10309.) Thus, PEG is proposed to increase the catalytic activity of HRP in nonaqueous media by locking the heme active site into a structure that functions through an alternative catalytic pathway in nonaqueous media.  相似文献   

15.
Twenty hydroxylated and acetoxylated 3-phenylcoumarins were synthesized, and the structure-activity relationships were investigated by evaluating the ability of these compounds to modulate horseradish peroxidase (HRP) catalytic activity and comparing the results to four flavonoids (quercetin, myricetin, kaempferol and galangin), previously reported as HRP inhibitors. It was observed that 3-phenylcoumarins bearing a catechol group were as active as quercetin and myricetin, which also show this substituent in the B-ring. The presence of 6,2'-dihydroxy group or 6,7,3',4'-tetraacetoxy group in the 3-phenylcoumarin structure also contributed to a significant inhibitory effect on the HRP activity. The catechol-containing 3-phenylcoumarin derivatives also showed free radical scavenger activity. Molecular modeling studies by docking suggested that interactions between the heme group in the HRP active site and the catechol group linked to the flavonoid B-ring or to the 3-phenyl coumarin ring are important to inhibit enzyme catalytic activity.  相似文献   

16.
Mendel S  Arndt A  Bugg TD 《Biochemistry》2004,43(42):13390-13396
The extradiol catechol dioxygenases catalyze the non-heme iron(II)-dependent oxidative cleavage of catechols to 2-hydroxymuconaldehyde products. Previous studies of a biomimetic model reaction for extradiol cleavage have highlighted the importance of acid-base catalysis for this reaction. Two conserved histidine residues were identified in the active site of the class III extradiol dioxygenases, positioned within 4-5 A of the iron(II) cofactor. His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) were replaced by glutamine, alanine, and tyrosine. Each mutant enzyme was catalytically inactive for extradiol cleavage, indicating the essential nature of these acid-base residues. Replacement of neighboring residues Asp-114 and Pro-181 gave D114N, P181A, and P181H mutant enzymes with reduced catalytic activity and altered pH/rate profiles, indicating the role of His-179 as a base and His-115 as an acid. Mutant H179Q was catalytically active for the lactone hydrolysis half-reaction, whereas mutant H115Q was inactive, implying a role for His-115 in lactone hydrolysis. A catalytic mechanism involving His-179 and His-115 as acid-base catalytic residues is proposed.  相似文献   

17.
Biotechnology applications of horseradish peroxidase (HRP) would benefit from access to tailor-made variants with greater specific activity, lower K(m) for peroxide, and higher thermostability. Starting with a mutant that is functionally expressed in Saccharomyces cerevisiae, we used random mutagenesis, recombination, and screening to identify HRP-C mutants that are more active and stable to incubation in hydrogen peroxide at 50 degrees C. A single mutation (N175S) in the HRP active site was found to improve thermal stability. Introducing this mutation into an HRP variant evolved for higher activity yielded HRP 13A7-N175S, whose half-life at 60 degrees C and pH 7.0 is three times that of wild-type (recombinant) HRP and a commercially available HRP preparation from Sigma (St. Louis, MO). The variant is also more stable in the presence of H(2)O(2), SDS, salts (NaCl and urea), and at different pH values. Furthermore, this variant is more active towards a variety of small organic substrates frequently used in diagnostic applications. Site-directed mutagenesis to replace each of the four methionine residues in HRP (M83, M181, M281, M284) with isoleucine revealed no mutation that significantly increased the enzyme's stability to hydrogen peroxide.  相似文献   

18.
Makde RD  Mahajan SK  Kumar V 《Biochemistry》2007,46(8):2079-2090
The Salmonella typhimurium PhoN protein is a nonspecific acid phosphatase and belongs to the phosphatidic acid phosphatase type 2 (PAP2) superfamily. We report here the crystal structures of phosphate-bound PhoN, the PhoN-tungstate complex, and the T159D mutant of PhoN along with functional characterization of three mutants: L39T, T159D, and D201N. Invariant active site residues, Lys-123, Arg-130, Ser-156, Gly-157, His-158, and Arg-191, interact with phosphate and tungstate oxyanions. Ser-156 also accepts a hydrogen bond from Thr-159. The T159D mutation, surprisingly, severely diminishes phosphatase activity, apparently by disturbing the active site scaffold: Arg-191 is swung out of the active site resulting in conformational changes in His-158 and His-197 residues. Our results reveal a hitherto unknown functional role of Arg-191, namely, restricting the active conformation of catalytic His-158 and His-197 residues. Consistent with the conserved nature of Asp-201 in the PAP2 superfamily, the D201N mutation completely abolished phosphatase activity. On the basis of this observation and in silico analysis we suggest that the crucial mechanistic role of Asp-201 is to stabilize the positive charge on the phosphohistidine intermediate generated by the transfer of phosphoryl to the nucleophile, His-197, located within hydrogen bond distance to the invariant Asp-201. This is in contrast to earlier suggestions that Asp-201 stabilizes His-197 and the His197-Asp201 dyad facilitates formation of the phosphoenzyme intermediate through a charge-relay system. Finally, the L39T mutation in the conserved polyproline motif (39LPPPP43) of dimeric PhoN leads to a marginal reduction in activity, in contrast to the nearly 50-fold reduction observed for monomeric Prevotella intermedia acid phosphatase, suggesting that the varying quaternary structure of PhoN orthologues may have functional significance.  相似文献   

19.
One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III) was investigated using some biophysical and biochemical methods. Firstly, it was found that a large amount of Tb(III) can be distributed on the cell wall, that some Tb(III) can enter into the horseradish cell, indicating that peroxidase was mainly distributed on cell wall, and thus that Tb(III) would interact with horseradish peroxidase (HRP) in the plant. In addition, peroxidase bioactivity was decreased in the presence of Tb(III). Secondly, a new peroxidase-containing Tb(III) complex (Tb–HRP) was obtained from horseradish after treatment with Tb(III); the molecular mass of Tb–HRP is near 44 kDa and the pI is about 8.80. Thirdly, the electrocatalytic activity of Tb–HRP is much lower than that of HRP obtained from horseradish without treatment with Tb(III). The decrease in the activity of Tb–HRP is due to the destruction (unfolding) of the conformation in Tb–HRP. The planarity of the heme active center in the Tb–HRP molecule was increased and the extent of exposure of Fe(III) in heme was decreased, leading to inhibition of the electron transfer. The microstructure change in Tb–HRP might be the result of the inhibition effect of Tb(III) on peroxidase activity in horseradish.  相似文献   

20.
The role of histidine in the catalytic mechanism of acetate kinase from Methanosarcina thermophila was investigated by diethylpyrocarbonate inactivation and site-directed mutagenesis. Inactivation was accompanied by an increase in absorbance at 240 nm with no change in absorbance at 280 nm, and treatment of the inactivated enzyme with hydroxylamine restored 95% activity, results that indicated diethylpyrocarbonate inactivates the enzyme by the specific modification of histidine. The substrates ATP, ADP, acetate, and acetyl phosphate protected against inactivation suggesting at least one active site where histidine is modified. Correlation of residual activity with the number of histidines modified, as determined by absorbance at 240 nm, indicated that a maximum of three histidines are modified per subunit, two of which are essential for full inactivation. Comparison of the M. thermophila acetate kinase sequence with 56 putative acetate kinase sequences revealed eight highly conserved histidines, three of which (His-123, His-180, and His-208) are perfectly conserved. Diethylpyrocarbonate inactivation of the eight histidine --> alanine variants indicated that His-180 and His-123 are in the active site and that the modification of both is necessary for full inactivation. Kinetic analyses of the eight variants showed that no other histidines are important for activity. Analysis of additional His-180 variants indicated that phosphorylation of His-180 is not essential for catalysis. Possible functions of His-180 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号