首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-arrestins target G protein-coupled receptors (GPCRs) for endocytosis via clathrin-coated vesicles. Beta-arrestins also become detectable on endocytic vesicles in response to angiotensin II type 1A receptor (AT1AR), but not beta2-adrenergic receptor (beta2AR), activation. The carboxyl-terminal tails of these receptors contribute directly to this phenotype, since a beta2AR bearing the AT1AR tail acquired the capacity to stimulate beta-arrestin redistribution to endosomes, whereas this property was lost for an AT1AR bearing the beta2AR tail. Using beta2AR/AT1AR chimeras, we tested whether the beta2AR and AT1AR carboxyl-terminal tails, in part via their association with beta-arrestins, might regulate differences in the intracellular trafficking and resensitization patterns of these receptors. In the present study, we find that beta-arrestin formed a stable complex with the AT1AR tail in endocytic vesicles and that the internalization of this complex was dynamin dependent. Internalization of the beta2AR chimera bearing the AT1AR tail was observed in the absence of agonist and was inhibited by a dominant-negative beta-arrestin1 mutant. Agonist-independent AT1AR internalization was also observed after beta-arrestin2 overexpression. After internalization, the beta2AR, but not the AT1AR, was dephosphorylated and recycled back to the cell surface. However, the AT1AR tail prevented beta2AR dephosphorylation and recycling. In contrast, although the beta2AR-tail promoted AT1AR recycling, the chimeric receptor remained both phosphorylated and desensitized, suggesting that receptor dephosphorylation is not a property common to all receptors. In summary, we show that the carboxyl-terminal tails of GPCRs not only contribute to regulating the patterns of receptor desensitization, but also modulate receptor intracellular trafficking and resensitization patterns.  相似文献   

2.
Resensitization of G protein-coupled receptors (GPCRs) following agonist-mediated desensitization is a necessary step for maintaining physiological responsiveness. However, the molecular mechanisms governing the nature of GPCR resensitization are poorly understood. Here, we examine the role of beta-arrestin in the resensitization of the beta(2) adrenergic receptor (beta(2)AR), known to recycle and resensitize rapidly, and the vasopressin V2 receptor (V2R), known to recycle and resensitize slowly. Upon agonist activation, both receptors recruit beta-arrestin to the plasma membrane and internalize in a beta-arrestin- and clathrin-dependent manner. However, whereas beta-arrestin dissociates from the beta(2)AR at the plasma membrane, it internalizes with the V2R into endosomes. The differential trafficking of beta-arrestin and the ability of these two receptors to dephosphorylate, recycle, and resensitize is completely reversed when the carboxyl-terminal tails of these two receptors are switched. Moreover, the ability of beta-arrestin to remain associated with desensitized GPCRs during clathrin-mediated endocytosis is mediated by a specific cluster of phosphorylated serine residues in the receptor carboxyl-terminal tail. These results demonstrate that the interaction of beta-arrestin with a specific motif in the GPCR carboxyl-terminal tail dictates the rate of receptor dephosphorylation, recycling, and resensitization, and thus provide direct evidence for a novel mechanism by which beta-arrestins regulate the reestablishment of GPCR responsiveness.  相似文献   

3.
G protein-coupled receptors (GPCRs) are integral membrane proteins that, in response to activation by extracellular stimuli, regulate intracellular second messenger levels via their coupling to heterotrimeric G proteins. GPCR activation also initiates a series of molecular events that leads to G protein-coupled receptor kinase-mediated receptor phosphorylation and the binding of beta-arrestin proteins to the intracellular face of the receptor. beta-Arrestin binding not only contributes to the G protein-uncoupling of GPCRs, but also mediates the targeting of many GPCRs for endocytosis in clathrin-coated pits. Several GPCRs internalize as a stable complex with beta-arrestin and the stability of this complex appears to regulate, at least in part, whether the receptors are dephosphorylated in early endosomes and recycled back to the cell surface as fully functional receptors, retained in early endosomes or targeted for degradation in lysosomes. More recently, it has become appreciated that the movement of GPCRs through functionally distinct intracellular membrane compartments is regulated by a variety of Rab GTPases and that the activity of these Rab GTPases may influence GPCR function. Moreover, it appears that GPCRs are not simply passive cargo molecules, but that GPCR activation may directly influence Rab GTPase activity and as such, GPCRs may directly control their own targeting between intracellular compartments. This review provides a synopsis of the current knowledge regarding the role of beta-arrestins and Rab GTPases in regulating the intracellular trafficking and function of GPCRs.  相似文献   

4.
5.
The most widely studied pathway underlying agonist-promoted internalization of G protein-coupled receptors (GPCRs) involves beta-arrestin and clathrin-coated pits. However, both beta-arrestin- and clathrin-independent processes have also been reported. Classically, the endocytic routes are characterized using pharmacological inhibitors and various dominant negative mutants, resulting sometimes in conflicting results and interpretational difficulties. Here, taking advantage of the fact that beta-arrestin binding to the beta2 subunit of the clathrin adaptor AP-2 (beta2-adaptin) is needed for the beta-arrestin-mediated targeting of GPCRs to clathrin-coated pits, we developed a bioluminescence resonance energy transfer-based approach directly assessing the molecular steps involved in the endocytosis of GPCRs in living cells. For 10 of the 12 receptors tested, including some that were previously suggested to internalize via clathrin-independent pathways, agonist stimulation promoted beta-arrestin 1 and 2 interaction with beta2-adaptin, indicating a beta-arrestin- and clathrin-dependent endocytic process. Detailed analyses of beta-arrestin interactions with both the receptor and beta2-adaptin also allowed us to demonstrate that recruitment of beta-arrestins to the receptor and the ensuing conformational changes are the leading events preceding AP-2 engagement and subsequent clathrin-mediated endocytosis. Among the receptors tested, only the endothelin A and B receptors failed to promote interaction between beta-arrestins and beta2-adaptin. However, both receptors recruited beta-arrestins upon agonist stimulation, suggesting a beta-arrestin-dependent but clathrin-independent route of internalization for these two receptors. In addition to providing a new tool to dissect the molecular events involved in GPCR endocytosis, the bioluminescence resonance energy transfer-based beta-arrestin/beta2-adaptin interaction assay represents a novel biosensor to assess receptor activation.  相似文献   

6.
beta-Arrestins, proteins involved in the turn-off of G protein-coupled receptor (GPCR) activation, bind to the beta(2)-adaptin subunit of the clathrin adaptor AP-2. The interaction of beta(2)-adaptin with beta-arrestin involves critical arginine residues in the C-terminal domain of beta-arrestin and plays an important role in initiating clathrin-mediated endocytosis of the beta(2)-adrenergic receptor (beta(2)AR) (Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S., and Caron, M. G. (2000) J. Biol. Chem. 275, 23120--23126). However, the beta-arrestin-binding site in beta(2)-adaptin has not been identified, and little is known about the role of beta-arrestin/AP-2 interaction in the endocytosis of other GPCRs. Using in vitro binding assays, we have identified two glutamate residues (Glu-849 and Glu-902) in beta(2)-adaptin that are important in beta-arrestin binding. These residues are located in the platform subdomain of the C terminus of beta(2)-adaptin, where accessory/adapter endocytic proteins for other classes of receptors interact, distinct from the main site where clathrin interacts. The functional significance of the beta-arrestin/AP-2/clathrin complex in the endocytosis of GPCRs such as the beta(2)AR and vasopressin type II receptor was evaluated using mutant constructs of the beta(2)-adaptin C terminus containing either the clathrin and the beta-arrestin binding domains or the beta-arrestin-binding domain alone. When expressed in human embryonic kidney 293 cells, both constructs acted as dominant negatives inhibiting the agonist-induced internalization of the beta(2)AR and the vasopressin type II receptor. In addition, although the beta(2)-adaptin construct containing both the clathrin and beta-arrestin binding domains was able to block the endocytosis of transferrin receptors, a beta(2)-adaptin construct capable of associating with beta-arrestin but lacking its high affinity clathrin interaction did not interfere with transferrin receptor endocytosis. These results suggest that the interaction of beta-arrestin with beta(2)-adaptin represents a selective endocytic trigger for several members of the GPCR family.  相似文献   

7.
We have observed an unexpected type of nonreciprocal "cross-regulation" of the agonist-induced endocytosis of G protein-coupled receptors by clathrin-coated pits. Isoproterenol-dependent internalization of beta2-adrenergic receptors in stably transfected HEK293 cells was specifically blocked (>65% inhibition) by vasopressin-induced activation of V2 vasopressin receptors co-expressed at similar levels. In contrast, activation of beta2 receptors caused no detectable effect on V2 receptor internalization in the same cells. Several pieces of evidence suggest that this nonreciprocal inhibition of endocytosis is mediated by receptor-specific intracellular trafficking of beta-arrestins. First, previous studies showed that the activation of V2 but not beta2 receptors caused pronounced recruitment of beta-arrestins to endocytic membranes (Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., and Caron, M. G. (1999) J. Biol. Chem. 274, 32248-32257). Second, overexpression of arrestin 2 or 3 (beta-arrestin 1 or 2) abolished the V2 receptor-mediated inhibition of beta2 receptor internalization. Third, mutations of the V2 receptor that block endomembrane recruitment of beta-arrestins eliminated the V2 receptor-dependent blockade of beta2 receptor internalization. These results identify a novel type of heterologous regulation of G protein-coupled receptors, define a new functional role of receptor-specific intracellular trafficking of beta-arrestins, and suggest an experimental method to rapidly modulate the functional activity of beta-arrestins in intact cells.  相似文献   

8.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

9.
The endocytic pathway of the secretin receptor, a class II GPCR, is unknown. Some class I G protein-coupled receptors (GPCRs), such as the beta(2)-adrenergic receptor (beta(2)-AR), internalize in clathrin-coated vesicles and this process is mediated by G protein-coupled receptor kinases (GRKs), beta-arrestin, and dynamin. However, other class I GPCRs, for example, the angiotensin II type 1A receptor (AT(1A)R), exhibit different internalization properties than the beta(2)-AR. The secretin receptor, a class II GPCR, is a GRK substrate, suggesting that like the beta(2)-AR, it may internalize via a beta-arrestin and dynamin directed process. In this paper we characterize the internalization of a wild-type and carboxyl-terminal (COOH-terminal) truncated secretin receptor using flow cytometry and fluorescence imaging, and compare the properties of secretin receptor internalization to that of the beta(2)-AR. In HEK 293 cells, sequestration of both the wild-type and COOH-terminal truncated secretin receptors was unaffected by GRK phosphorylation, whereas inhibition of cAMP-dependent protein kinase mediated phosphorylation markedly decreased sequestration. Addition of secretin to cells resulted in a rapid translocation of beta-arrestin to plasma membrane localized receptors; however, secretin receptor internalization was not reduced by expression of dominant negative beta-arrestin. Thus, like the AT(1A)R, secretin receptor internalization is not inhibited by reagents that interfere with clathrin-coated vesicle-mediated internalization and in accordance with these results, we show that secretin and AT(1A) receptors colocalize in endocytic vesicles. This study demonstrates that the ability of secretin receptor to undergo GRK phosphorylation and beta-arrestin binding is not sufficient to facilitate or mediate its internalization. These results suggest that other receptors may undergo endocytosis by mechanisms used by the secretin and AT(1A) receptors and that kinases other than GRKs may play a greater role in GPCR endocytosis than previously appreciated.  相似文献   

10.
The N-formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor (GPCR) that transmits intracellular signals in response to a variety of agonists, many of them being clearly implicated in human pathology. beta-arrestins are adaptor proteins that uncouple GPCRs from G protein and regulate receptor internalization. They can also function as signal transducers through the scaffolding of signaling molecules, such as components of the extracellular signal-regulated kinase (ERK) cascade. We investigated the role of beta-arrestins in ligand-induced FPRL1 internalization and signaling. In HEK293 cells expressing FPRL1, fluorescence microscopy revealed that agonist-stimulated FPRL1 remained co-localized with beta-arrestins during endocytosis. Internalization of FPRL1, expressed in a mouse embryonic fibroblast (MEF) cell line lacking endogenous beta-arrestins, was highly compromised. This distinguishes FPRL1 from the prototypical formyl peptide receptor FPR that is efficiently internalized in the absence of beta-arrestins. In both HEK293 and MEF cells, FPRL1-mediated ERK1/2 activation was a rapid and transient event. The kinetics and extent of ERK1/2 activation were not significantly modified by beta-arrestin overexpression. The pattern of FPRL1-mediated ERK1/2 activation was similar whether cells express or not beta-arrestins. Furthermore, treatment of the FPRL1 expressing cells with pertussis toxin inhibited ERK1/2 activation in MEF and in HEK293 cells. These results led us to conclude that activation of ERK1/2 mediated by FPRL1 occurs primarily through G protein signaling. Since beta-arrestin-mediated signaling has been observed essentially for receptors coupled to G proteins other than G(i), this may be a characteristic of G(i) protein-coupled chemoattractant receptors.  相似文献   

11.
Formyl peptide receptor (FPR) and C5a receptor (C5aR) are chemoattractant G protein-coupled receptors (GPCRs) involved in the innate immune response against bacterial infections and tissue injury. Like other GPCRs, they recruit beta-arrestin1/2 to the plasma membrane and activate the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Previous studies with several GPCRs have suggested that beta-arrestins play an important role as signal transducers by scaffolding signaling molecules such as ERK1/2. This function of the beta-arrestins was not discovered until several years after their role in desensitization and endocytosis had been reported. In this study, we investigated the role of the beta-arrestins in the activation of ERK1/2 and receptor endocytosis. We took advantage of previously described mutants of FPR that have defects in G(i) coupling or beta-arrestin recruitment. The results obtained with the mutant FPRs, as well as experiments using an inhibitor of G(i) and cells overexpressing beta-arrestin2, showed that activation of ERK1/2 takes place through G(i) and is not affected by beta-arrestins. However, overexpression of beta-arrestin2 does enhance FPR sequestration from the cell surface, suggesting a role in desensitization, as shown for many other GPCRs. Experiments with CHO C5aR cells showed similar sensitivity to the G(i) inhibitor as CHO FPR cells, suggesting that the predominant activation of ERK1/2 through G protein may be a common characteristic among chemoattractant receptors.  相似文献   

12.
Classically, G protein-coupled receptors (GPCRs) relay signals by directly activating heterotrimeric guanine nucleotide-binding proteins (G proteins). Increasing evidence indicates that GPCRs may also signal through G protein-independent pathways. JAK/STATs, Src-family tyrosine kinases, GRKs/beta-arrestins, and PDZ domain-containing proteins have been suggested to directly relay signals from GPCRs independent of G proteins. In addition, our laboratory recently reported that the beta(2) adrenergic receptor (beta(2)AR) could switch from G protein-coupled to G protein-independent ERK (extracellular signal-regulated kinase) activation in an agonist dosage-dependent manner. This finding provides a novel mechanism for G protein-independent GPCR signaling. This review focuses on recent progress in understanding the mechanisms by which G protein-independent GPCR signaling occurs.  相似文献   

13.
Proteases cleave proteinase-activated receptors (PARs) to expose N-terminal tethered ligands that bind and activate the cleaved receptors. The tethered ligand, once exposed, is always available to interact with its binding site. Thus, efficient mechanisms must prevent continuous activation, including receptor phosphorylation and uncoupling from G-proteins, receptor endocytosis, and lysosomal degradation. beta-Arrestins mediate uncoupling and endocytosis of certain neurotransmitter receptors, which are activated in a reversible manner. However, the role of beta-arrestins in trafficking of PARs, which are irreversibly activated, and the effects of proteases on the subcellular distribution of beta-arrestins have not been examined. We studied trafficking of PAR2 and beta-arrestin1 coupled to green fluorescent protein. Trypsin induced the following: (a) redistribution of beta-arrestin1 from the cytosol to the plasma membrane, where it co-localized with PAR2; (b) internalization of beta-arrestin1 and PAR2 into the same early endosomes; (c) redistribution of beta-arrestin1 to the cytosol concurrent with PAR2 translocation to lysosomes; and (d) mobilization of PAR2 from the Golgi apparatus to the plasma membrane. Overexpression of a C-terminal fragment of beta-arrestin-319-418, which interacts constitutively with clathrin but does not bind receptors, inhibited agonist-induced endocytosis of PAR2. Our results show that beta-arrestins mediate endocytosis of PAR2 and support a role for beta-arrestins in uncoupling of PARs.  相似文献   

14.
Molecular sorting of G protein-coupled receptors (GPCRs) between divergent recycling and lysosomal pathways determines the functional consequences of agonist-induced endocytosis. The carboxyl-terminal cytoplasmic domain of the beta2 adrenergic receptor (beta2AR) mediates both PDZ binding to Na+/H+ exchanger regulatory factor/ezrin/radixin/moesin-binding phosphoprotein of 50 kDa (NHERF/EBP50) family proteins and non-PDZ binding to the N-ethylmaleimide-sensitive factor (NSF). We have investigated whether PDZ interaction(s) are actually sufficient to promote rapid recycling of endocytosed receptors and, if so, whether PDZ-mediated sorting is restricted to the beta2AR tail or to sequences that bind NHERF/EBP50. The trafficking effects of short (10 residue) sequences differing in PDZ and NSF binding properties were examined using chimeric mutant receptors. The recycling activity of the beta2AR-derived tail sequence was not blocked by a point mutation that selectively disrupts binding to NSF, and naturally occurring PDZ ligand sequences were identified that do not bind detectably to NSF yet function as strong recycling signals. The carboxyl-terminal cytoplasmic domain of the beta1-adrenergic receptor, which does not bind either to NSF or NHERF/EBP50 and interacts selectively with a distinct group of PDZ proteins, promoted rapid recycling of chimeric mutant receptors with efficiency similarly high as that of the beta2AR tail. These results indicate that PDZ domain-mediated protein interactions are sufficient to promote rapid recycling of GPCRs, independent of binding to NSF. They also suggest that PDZ-directed recycling is a rather general mechanism of GPCR regulation, which is not restricted to a single GPCR, and may involve additional PDZ domain-containing protein(s) besides NHERF/EBP50.  相似文献   

15.
The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.  相似文献   

16.
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.  相似文献   

17.
The small family of G-protein-coupled receptor kinases (GRKs) regulate cell signaling by phosphorylating heptahelical receptors, thereby promoting receptor interaction with beta-arrestins. This switches a receptor from G-protein activation to G-protein desensitization, receptor internalization, and beta-arrestin-dependent signal activation. However, the specificity of GRKs for recruiting beta-arrestins to specific receptors has not been elucidated. Here we use the beta(2)-adrenergic receptor (beta(2)AR), the archetypal nonvisual heptahelical receptor, as a model to test functional GRK specificity. We monitor endogenous GRK activity with a fluorescence resonance energy transfer assay in live cells by measuring kinetics of the interaction between the beta(2)AR and beta-arrestins. We show that beta(2)AR phosphorylation is required for high affinity beta-arrestin binding, and we use small interfering RNA silencing to show that HEK-293 and U2-OS cells use different subsets of their expressed GRKs to promote beta-arrestin recruitment, with significant GRK redundancy evident in both cell types. Surprisingly, the GRK specificity for beta-arrestin recruitment does not correlate with that for bulk receptor phosphorylation, indicating that beta-arrestin recruitment is specific for a subset of receptor phosphorylations on specific sites. Moreover, multiple members of the GRK family are able to phosphorylate the beta(2)AR and induce beta-arrestin recruitment, with their relative contributions largely determined by their relative expression levels. Because GRK isoforms vary in their regulation, this partially redundant system ensures beta-arrestin recruitment while providing the opportunity for tissue-specific regulation of the rate of beta-arrestin recruitment.  相似文献   

18.
Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.  相似文献   

19.
20.
Shiina T  Nagao T  Kurose H 《Life sciences》2001,68(19-20):2251-2257
It has been reported that beta-arrestin is essential for the internalization of many G protein-coupled receptors. Since beta1-adrenergic receptor (beta1AR) shows the resistance to agonist-induced internalization, we examine the interaction of beta-arrestin with beta1AR with three different approaches: translocation of beta-arrestin to the plasma membrane, direct binding of in vitro translated beta-arrestin to intracellular domains of beta1- and beta2ARs, inhibition of beta1- and beta2AR-stimulated adenylyl cyclase activities by beta-arrestin. The enhanced green fluorescent protein (EGFP)-tagged beta-arrestin 2 (beta-arrestin 2-GFP) translocates to and stays at the plasma membrane by beta2AR stimulation. Beta-arrestin 2-GFP also translocates to the plasma membrane upon beta1AR stimulation. However, it returns to the cytoplasm 10 - 30 min after agonist stimulation. The amount of beta-arrestin bound to the third intracellular loop and the carboxyl tail of beta1AR is lower than that of beta2AR. The fusion protein of beta-arrestin 1 with glutathione-S-transferase inhibits the beta1- and beta2AR-stimulated adenylyl cyclase activities. However, inhibition of the beta1AR-stimulated activity requires a higher amount of the fusion protein than that of the beta2AR-stimulated activity. These results suggest that affinity of beta1AR for beta-arrestins is lower than that of beta2AR, and explains the resistance to agonist-induced internalization. This conclusion is further supported by the finding that beta-arrestin can induce internalization of beta1AR when beta-arrestin 1 fused to the carboxyl tail of beta1AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号