首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
4.
5.
6.
To examine the chromatin basis of imprinting in chromosome 15q11-q13, we have investigated the status of histone acetylation of the SNURF-SNRPN locus, which is a key imprinted gene locus in Prader-Willi syndrome (PWS). Chromatin immunoprecipitation (ChIP) studies revealed that the unmethylated CpG island of the active, paternally derived allele of SNURF-SNRPN was associated with acetylated histones, whereas the methylated maternally derived, inactive allele was specifically hypoacetylated. The body of the SNURF-SNRPN gene was associated with acetylated histones on both alleles. Furthermore, treatment of PWS cells with the DNA methyltransferase inhibitor 5-azadeoxycytidine (5-aza-dC) induced demethylation of the SNURF-SNRPN CpG island and restoration of gene expression on the maternal allele. The reactivation was associated with increased H4 acetylation but not with H3 acetylation at the SNURF-SNRPN CpG island. These findings indicate that (1) a significant role for histone deacetylation in gene silencing is associated with imprinting in 15q11-q13 and (2) silenced genes in PWS can be reactivated by drug treatment.  相似文献   

7.
8.
Promoter CpG hypermethylation of tumor suppressor genes is an essential step in cancer progression but little is known about its effect on cancer multidrug resistance. In this study, we showed that CDH1 promoter was hypermethylated in drug resistance of a doxorubicin-induced multidrug resistant hepatocellular carcinoma cell line R-HepG2. Transfection of CDH1 cDNA into R-HepG2 cells led to increased amount of doxorubicin uptake, decreased cell viability, decreased P-glycoprotein expression and increased apoptotic population of cells exposed to doxorubicin. Proto-oncogene tyrosine-protein kinase FYN was over-expressed in R-HepG2 cells which displayed a negative correlation with the expression of CDH1. FYN was knocked down in R-HepG2 cells, leading to less drug resistance by increased cell viability, increased doxorubicin uptake and attenuated P-glycoprotein expression. Our findings identified epigenetic silencing of CDH1 in cancer cells might be a new molecular event of multidrug resistance.  相似文献   

9.
10.
The tumor suppressor Chk2 kinase plays crucial roles in regulating cell-cycle checkpoints and apoptosis following DNA damage. We investigated the expression levels of the genes encoding Chk2 and several cell-cycle regulators in nine cell lines from lymphoid malignancies, including three Hodgkin's lymphoma (HL) lines. We found that all HL cell lines exhibited a drastic reduction in Chk2 expression without any apparent mutation of the Chk2 gene. However, expression of Chk2 in HL cells was restored following treatment with the histone deacetylase inhibitors trichostatin A (TsA) and sodium butyrate (SB), or with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5Aza-dC). Chromatin-immunoprecipitation (Chip) assays revealed that treatment of HL cells with TsA, SB or 5Aza-dC resulted in increased levels of acetylated histones H3 and H4, and decreased levels of dimethylated H3 lysine 9 at the Chk2 promoter. These results indicate that expression of the Chk2 gene is downregulated in HL cells via epigenetic mechanisms.  相似文献   

11.
Two mammalian genes encode the SURx (SUR1, Abcc8 and SUR2, Abcc9) subunits that combine with Kir6.2 (Kcnj11) subunits to form the ATP-sensitive potassium (KATP) channel in cardiac myocytes. Different isoform combinations endow the channel with distinct physiological and pharmacological properties, and we have recently reported that the molecular composition of sarcolemmal KATP channels is chamber specific in the mouse heart. KATP channel composition is determined by what subunits are expressed in a cell or tissue. In the present study, we explore the role of CpG methylation in regulating SUR1 and SUR2 expression. In HL-1 cardiomyocytes, as in atrial myocytes, SUR1 expression is markedly greater than SUR2. Consistent with CpG methylation-dependent silencing of SUR2 expression, bisulfite sequencing of genomic DNA isolated from HL-1 cells demonstrates that 57.6% of the CpGs in the promoter region of the SUR2 gene are methylated, compared with 0.14% of the the CpG residues in the SUR1 sequence. Moreover, treatment with 10 μM 5-aza-2'-deoxycytidine (Aza-dC) significantly increased both the unmethylated fraction of the SUR2 CpG island and mRNA expression. However, we cannot rule out additional mechanisms of Aza-dC action, as Aza-dC also causes a decrease in SUR1 expression and lower doses of Aza-dC do not alter the unmethylated DNA fraction but do elicit a small increase in SUR2 expression. The conclusion that DNA methylation alone is not the only regulator of SUR subunit expression is also consistent with observations in native myocytes, where the CpG islands of both SUR genes are essentially unmethylated in both atrial and ventricular myocytes. Collectively, these data demonstrate the potential for CpG methylation to regulate SURx subunit expression and raises the possibility that regulated or aberrant CpG methylation might play a role in controlling channel structure and function under different physiological conditions or different species.  相似文献   

12.
In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.  相似文献   

13.
Zheng Z  Li L  Liu X  Wang D  Tu B  Wang L  Wang H  Zhu WG 《FASEB journal》2012,26(1):449-459
Not only does 5-aza-2'-deoxycytidine (5-aza-CdR) induce the reexpression of silenced genes through the demethylation of CpG islands, but it increases the expression of unmethylated genes. However, the mechanism by which 5-aza-CdR activates the expression of genes is not completely understood. Here, we report that the pRb pocket proteins pRb, p107, and p130 were degraded in various cancer cell lines in response to 5-aza-CdR treatment, and this effect was dependent on the proteasome pathway. Mouse double minute 2 (MDM2) played a critical role in this 5-aza-CdR-induced degradation of pRb. Furthermore, PP2A phosphatase-induced MDM2 dephosphorylation at S260 was found to be essential for MDM2 binding to pRb in the presence of 5-aza-CdR. pRb degradation resulted in the significant reexpression of several genes, including methylated CDKN2A, RASFF1A, and unmethylated CDKN2D. Finally, knockdown of pRb pocket proteins by either RNAi or 5-aza-CdR treatment induced a significant decrease in the recruitment of SUV39H1 and an increase in the enrichment of KDM3B and KDM4A to histones around the promoter of RASFF1A and thus reduced H3K9 di- and trimethylation, by which RASFF1A expression is activated. Our data reveal a novel mechanism by which 5-aza-CdR induces the expression of both methylated and unmethylated genes by degrading pRb pocket proteins.  相似文献   

14.
15.
16.
17.
Increased expression of 5-lipoxygenase is associated with various neuropathologies and may be related to epigenetic gene regulation. DNA methylation in promoter regions is typically associated with gene silencing. We found that human NT2 cells, which differentiate into neuron-like NT2-N cells, express 5-lipoxygenase and we investigated the relationship between 5-lipoxygenase expression and the methylation state of the 5-lipoxygenase core promoter. We used the demethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor valproate to alter DNA methylation and to induce histone modifications. 5-Lipoxygenase expression and DNA methylation were assayed with RT-PCR and bisulfite genomic sequencing, respectively. Neuronal differentiation of proliferating NT2 precursors decreased 5-lipoxygenase expression. 5-Aza-2'-deoxycytidine increased 5-lipoxygenase mRNA levels only in proliferating cells, whereas valproate increased 5-lipoxygenase mRNA levels in a cell cycle-independent manner. In both precursors and differentiated cells, CpG dinucleotides of the promoter were poorly methylated. In precursors, both 5-aza-2'-deoxycytidine and valproate further reduced the number of methylated CpGs. Moreover, we found evidence for cytosine methylation in CpWpG (W=adenine or thymine) and other asymmetrical sequences; CpWpG methylation was reduced by valproate in NT2-N but not in NT2 cells. This is the first report demonstrating that the dynamics of DNA methylation relates to neural 5-lipoxygenase gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号