首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial outer membrane protein, Mmm1p, is required for normal mitochondrial shape in yeast. To identify new morphology proteins, we isolated mutations incompatible with the mmm1-1 mutant. One of these mutants, mmm2-1, is defective in a novel outer membrane protein. Lack of Mmm2p causes a defect in mitochondrial shape and loss of mitochondrial DNA (mtDNA) nucleoids. Like the Mmm1 protein (Aiken Hobbs, A.E., M. Srinivasan, J.M. McCaffery, and R.E. Jensen. 2001. J. Cell Biol. 152:401-410.), Mmm2p is located in dot-like particles on the mitochondrial surface, many of which are adjacent to mtDNA nucleoids. While some of the Mmm2p-containing spots colocalize with those containing Mmm1p, at least some of Mmm2p is separate from Mmm1p. Moreover, while Mmm2p and Mmm1p both appear to be part of large complexes, we find that Mmm2p and Mmm1p do not stably interact and appear to be members of two different structures. We speculate that Mmm2p and Mmm1p are components of independent machinery, whose dynamic interactions are required to maintain mitochondrial shape and mtDNA structure.  相似文献   

2.
One of the major outer membrane proteins of yeast mitochondria was isolated and purified. It migrated as a single band with an apparent molecular weight of 30 kDa on a SDS-electrophoretogram. When reconstituted in lipid bilayer membranes the protein formed pores with a single channel conductance of 0.45 nS in 0.1 M KCl. The pores had the characteristics of general diffusion pores with an estimated diameter of 1.7 nm. The pore of mitochondrial outer membranes of yeast shared some similarities with the pores formed by mitochondrial and bacterial porins. The pores switched to substates at voltages higher than 20 mV. The possible role of this voltagedependence in the metabolism of mitochondria is discussed.  相似文献   

3.
UGO1 encodes an outer membrane protein required for mitochondrial fusion   总被引:1,自引:0,他引:1  
Membrane fusion plays an important role in controlling the shape, number, and distribution of mitochondria. In the yeast Saccharomyces cerevisiae, the outer membrane protein Fzo1p has been shown to mediate mitochondrial fusion. Using a novel genetic screen, we have isolated new mutants defective in the fusion of their mitochondria. One of these mutants, ugo1, shows several similarities to fzo1 mutants. ugo1 cells contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. ugo1 mutants lose mitochondrial DNA (mtDNA). In zygotes formed by mating two ugo1 cells, mitochondria do not fuse and mix their matrix contents. Fragmentation of mitochondria and loss of mtDNA in ugo1 mutants are rescued by disrupting DNM1, a gene required for mitochondrial division. We find that UGO1 encodes a 58-kD protein located in the mitochondrial outer membrane. Ugo1p appears to contain a single transmembrane segment, with its NH(2) terminus facing the cytosol and its COOH terminus in the intermembrane space. Our results suggest that Ugo1p is a new outer membrane component of the mitochondrial fusion machinery.  相似文献   

4.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of purified mitochondrial porin from yeast and of detergent-solubilized mitochondrial outer membranes of a porin-free yeast mutant. The addition of the porin resulted in a strong increase of the membrane conductance, which was caused by the formation of ion-permeable channels in the membranes. Yeast porin has a single-channel conductance of 4.2 nS in 1 M KCl. In the open state it behaves as a general diffusion pore with an effective diameter of 1.7 nm and possesses properties similar to other mitochondrial porins. Surprisingly, the membrane conductance also increased in the presence of detergent extracts of the mitochondrial outer membrane of the mutant. Single-channel recordings of lipid bilayer membranes in the presence of small concentration of the mutant membranes suggested that this membrane also contained a pore. The reconstituted pores had a single-channel conductance of 2.0 nS in 1 M KCl and the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. This means that the pores present in the mitochondrial outer membranes of the yeast mutant have a much smaller effective diameter than normal mitochondrial porins. Zero-current membrane potential measurements suggested that the second mitochondrial porin is slightly cation-selective, while yeast porin is slightly anion-selective in the open state but highly cation-selective in the closed state. The possible role of these pores in the metabolism of mitochondria is discussed.  相似文献   

5.
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs.  相似文献   

6.
The mitochondrial dynamin-like GTPase Mgm1 exists as a long (l-Mgm1) and a short isoform (s-Mgm1). They both are essential for mitochondrial fusion. Here we show that the isoforms interact in a homotypic and heterotypic manner. Their submitochondrial distribution between inner boundary membrane and cristae was markedly different. Overexpression of l-Mgm1 exerts a dominant negative effect on mitochondrial fusion. A functional GTPase domain is required only in s-Mgm1 but not in l-Mgm1. We propose that l-Mgm1 acts primarily as an anchor in the inner membrane that in concert with the GTPase activity of s-Mgm1 mediates the fusion of inner membranes.  相似文献   

7.
Patch-clamping studies with native outer mitochondrial membranes show a complex behavior. In the range of potentials in which the polarity of the pipette is positive, the behavior resembles that of VDAC incorporated into bilayers. Accordingly, there is a decrease in conductance with voltage. An involvement of VDAC is also supported by responses of the patches to the presence of polyanion or treatment with succinic anhydride, both of which affect VDAC. In contrast, in the negative range of potential, the conductance of the patches generally increases with the magnitude of the voltage. The increase in conductance shows a biphasic time course which is consistent with a model in which channels are first activated (first phase) and then assembled into larger high-conductance channels (second phase). A variety of experiments support the notion that an assembly takes place. The time course of the conductance increase is consistent with formation of the second-phase channels from 6±1 subunits.  相似文献   

8.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

9.
In yeast, mitochondrial division and fusion are highly regulated during growth, mating and sporulation, yet the mechanisms controlling these activities are unknown. Using a novel screen, we isolated mutants in which mitochondria lose their normal structure, and instead form a large network of interconnected tubules. These mutants, which appear defective in mitochondrial division, all carried mutations in DNM1, a dynamin-related protein that localizes to mitochondria. We also isolated mutants containing numerous mitochondrial fragments. These mutants were defective in FZO1, a gene previously shown to be required for mitochondrial fusion. Surprisingly, we found that in dnm1 fzo1 double mutants, normal mitochondrial shape is restored. Induction of Dnm1p expression in dnm1 fzo1 cells caused rapid fragmentation of mitochondria. We propose that dnm1 mutants are defective in the mitochondrial division, an activity antagonistic to fusion. Our results thus suggest that mitochondrial shape is normally controlled by a balance between division and fusion which requires Dnm1p and Fzo1p, respectively.  相似文献   

10.
Patch clamp techniques were applied to outer mitochondrial membranes of giant mitochondria from mice kept on a cuprizone diet or to vesicles produced by fusing membranes derived from the outer membrane ofNeurospora mitochondria. In the negative range of potentials the conductances decreased with increases in the magnitude of voltage, suggesting the closing of channels. Experiments in which mitochondria were treated with the polyanion polymethacrylate maleate styrene (1:2:3) or succinic anhydride suggest that the channels correspond to VDAC. Although sometimes conductance also decreased with increasing potential over a narrow range of positive potentials, more commonly the conductances increased. Although this phenomenon may represent a detachment of the patch, the changes in conductance are reversible, suggesting that they correspond to the formation or the opening of channels.  相似文献   

11.
The yeast gene MCR1 encodes two isoforms of the mitochondrial NADH-cytochrome b5 reductase. One form is embedded in the outer membrane whereas the other is located in the intermembrane space (IMS). In the present work we investigated the biogenesis of the outer membrane form. We demonstrate that while the IMS form crosses the outer membrane via the translocase of the outer mitochondrial membrane (TOM) complex, the other form is integrated into the outer membrane by a process that does not require any of the known import components at the outer membrane. Thus, the import pathways of the two forms diverge in a stage before the encounter with the TOM complex and their mechanism of biogenesis represents a unique example how to achieve dual localization within one organelle.  相似文献   

12.
The translocase of the outer mitochondrial membrane (TOM) complex is the general entry site into the organelle for newly synthesized proteins. Despite its central role in the biogenesis of mitochondria, the assembly process of this complex is not completely understood. Mim1 (mitochondrial import protein 1) is a mitochondrial outer membrane protein with an undefined role in the assembly of the TOM complex. The protein is composed of an N-terminal cytosolic domain, a central putative transmembrane segment (TMS) and a C-terminal domain facing the intermembrane space. Here we show that Mim1 is required for the integration of the import receptor Tom20 into the outer membrane. We further investigated what the structural characteristics allowing Mim1 to fulfil its function are. The N- and C-terminal domains of Mim1 are crucial neither for the function of the protein nor for its biogenesis. Thus, the TMS of Mim1 is the minimal functional domain of the protein. We show that Mim1 forms homo-oligomeric structures via its TMS, which contains two helix-dimerization GXXXG motifs. Mim1 with mutated GXXXG motifs did not form oligomeric structures and was inactive. With all these data taken together, we propose that the homo-oligomerization of Mim1 allows it to fulfil its function in promoting the integration of Tom20 into the mitochondrial outer membrane.  相似文献   

13.
Mitochondria continually fuse and divide to yield a dynamic interconnected network throughout the cell. During apoptosis, concomitantly with permeabilization of the mitochondrial outer membrane (MOMP) and cytochrome c release, mitochondria undergo massive fission. This results in the formation of small, round organelles that tend to aggregate around the nucleus. Under some circumstances, preceding their fission, mitochondria tend to elongate and to hyperfuse, a process that is interpreted as a cell defense mechanism. Since many years, there is a controversy surrounding the physiological relevance of mitochondrial fragmentation in apoptosis. In this review, we present recent advances in this field, describe the mechanisms that underlie this process, and discuss how they could cooperate with Bax to trigger MOMP and cytochrome c release. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

14.
The polyanion-induced substate of the outer mitochondrial membrane was studiedin vivo andin vitro. Study of the substate in artificial bilayers showed that it is highly cation selective. The induction of the substate in intact mitochondria leads to a complete inhibition of the intermembrane kinases, such as creatine kinase and adenylate kinase, which were excluded from the external ATP pool. Peripheral kinases, such as hexokinase, were blocked when they utilized internal ATP. The results with intact mitochondria suggested the existence of two regions of the outer membrane containing channels of different states, which may be involved in the regulation of intermembrane and peripheral kinases.  相似文献   

15.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   

16.
The major portion of rat brain hexokinase (HK type I) is bound to the outer membrane of mitochondria and glucose-6-phosphate (G6P) can release the bound enzyme. In an attempt to look at the hydrophobic component of binding, interaction of the enzyme with a purely hydrophobic matrix, palmityl-substituted Sepharose-4B (Sepharose-lipid) was investigated. Hexokinase readily bound to this matrix with retention of its catalytic activity. Glucose-6-phosphate which has a releasing effect on the mitochondrially bound enzyme, enhanced binding of the enzyme on the hydrophobic matrix. Chymotrypsin treatment of hexokinase which causes loss of binding to mitochondria, also results in loss of adsorption to the hydrophobic matrix, thus demonstrating that the hydrophobic tail present at its N-terminal end is essential for binding in both cases. Data presented provide some new information relevant to understanding how hexokinase interacts with its natural binding matrix, the mitochondrion.  相似文献   

17.
The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.  相似文献   

18.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.  相似文献   

19.
The ionic permeability of the outer mitochondrial membrane (OMM) was studied with the patch clamp technique. Electrical recording of intact mitochondria (hence of the outer membrane (OM)), derived from mouse liver, showed the presence of currents corresponding to low conductances (< 50 pS), as well as of four distinct conductances of 99 pS,152 pS, 220 pS and 307 pS (in 150 mM KCl). The latter were voltage gated, being open preferentially at positive (pipette) potentials. Very similar currents were found by patch clamping liposomes containing the isolated OM derived from rat brain mitochondria. Here a conductance of approximately 530 pS, resembling in its electrical characteristics a conductance already attributed to mitochondrial contact sites (Moran et al. 1990), was also detected. Immunoblot assays of mitochondria and of the isolated OM with antibodies against the outer membrane voltage-dependent anion channel (VDAC) (Colombini 1979), showed the presence of the anion channel in each case. However, the typical electrical behaviour displayed by such a channel in planar bilayers could not be detected under our experimental conditions. From this study, the permeability of the OMM appears different from what has been reported hitherto, yet is more in line with that multifarious and dynamic structure which apparently should belong to it, at least within the framework of mitochondrial biogenesis (Pfanner and Neupert 1990).  相似文献   

20.
Summary Detergent-free rat brain outer mitochondrial membranes were incorporated in planar lipid bilayers in the presence of an osmotic gradient, and studied at high (1 m KCl) and low (150 mm KCl) ionic strength solutions. By comparison, the main outer mitochondrial membrane protein, VDAC, extracted from rat liver with Triton X-100, was also studied in 150 mm KCl. In 1 m KCl, brain outer membranes gave rise to electrical patterns which resembled very closely those widely described for detergent-extracted VDAC, with transitions to several subconducting states upon increase of the potential difference, and sensitivity to polyanion. The potential dependence of the conductance of the outer membrane, however, was steeper and the extent of closure higher than that observed previously for rat brain VDAC. In 150 mm KCl, bilayers containing only one channel had a conductance of 700 ± 23 pS for rat brain outer membranes, and 890 ± 29 pS for rat liver VDAC. Use of a fast time resolution setup allowed demonstration of open-close transitions in the millisecond range, which were independent of the salt concentration and of the protein origin. We also found that a potential difference higher than approx. ± 60 mV induced an almost irreversible decrease of the single channel conductance to few percentages of the full open state and a change in the ionic selectivity. These results show that the behavior of the outer mitochondrial membrane in planar bilayers is close to that detected with the patch clamp (Moran et al., 1992, Eur. Biophys. J. 20:311–319).The neurotoxicological action of aluminum was studied in single outer membrane channels from rat brain mitochondria. We found that m concentrations of Al Cl3 and aluminum lactate decreased the conductance by about 50%, when the applied potential difference was positive relative to the side of the metal addition.The authors thank Dr. O. Moran for helpful discussions, Dr. M. Colombini for a sample of polyanion, and the Sharing Company for financial support to Dr. T. M. This work was partly supported by funds from the Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica of Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号