首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

2.
唐如玉  徐鹏  余迪求 《广西植物》2020,40(2):159-172
该研究基于4个陆稻群体及172个水稻品种或杂交组合,构建了水稻多亲本隐性核不育轮回选择群体XTBG-HP1,并经过4次轮回重组,采用16个表型性状对其进行了遗传多样性分析。结果表明:(1)该群体14个数量性状符合正态分布,各表型均存在极端性状个体。(2)数量性状变异系数范围为0.08~0.41,均值为0.20; Shannon-Wiener多样性指数范围为0.72~1.92,均值为1.50。(3)群体在株型与产量构成因子性状方面有显著的相关性,对株型的选择可以实现产量性状的改良。(4)剑叶长、每穗粒总数、千粒重、穗长、粒长、一次枝梗数、有效穗数、剑叶宽、二次枝梗数、抽穗期10个性状可作为群体综合评价指标。(5)剑叶长、二次枝梗数、每穗粒总数3个表型性状具有较高的遗传变异、丰富的遗传多样性及与综合得分F值相关系数较高。综合以上结果发现,后期群体进行基因挖掘、品种改良以及优良育种材料的选育可以基于剑叶长、二次枝梗数及每穗粒总数3个表型性状,同时要充分利用群体株型与产量构成因子性状间的显著相关性。此外,该研究群体中极端单性状或综合得分F值较高的个体,可进一步用于品种选育。  相似文献   

3.
Late season drought coinciding with the rice booting to heading stage affects the development of plant height,panicle exsertion,and flag leaf size,and causes significant yield loss.In this study,a recombinant inbred line population derived from a cross between paddy and upland cultivars was used for data collection of the morphologic traits under well water and drought stress conditions.bought stress was applied at the stage of panicle initiation in the field in 2002 and at the booting stage in PVC pipes in 2003.The data from stress con ditions and their ratios(tait measured under stress condition/trait measured under well water condition)or differences(trait measured under stress condition minus trait measured under well water condition)were used for OTL analysis.Totally,17 and 36 QTLs for these traits were identified in 2002 and 2003,respectively,which explained a range of 2.58%-29.82%Of the phenotypic variation.Among them,six QTLs were commonly identified in the two years,suggesting that the drought stress in the two years was different.The genetic basis of these traits will provide useful information for improving rice late season drought resistance,and their application as indirect indices in rice late season drought resistance screening was also discussed.  相似文献   

4.
A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations.  相似文献   

5.
Mapping QTLs associated with drought avoidance in upland rice   总被引:20,自引:0,他引:20  
The identification of molecular markers linked to genes controlling drought resistance factors in rice is a necessary step to improve breeding efficiency for this complex trait. QTLs controlling drought avoidance mechanisms were analyzed in a doubled-haploid population of rice. Three trials with different drought stress intensities were carried out in two sites. Leaf rolling, leaf drying, relative water content of leaves and relative growth rate under water stress were measured on 105 doubled haploid lines in two trials and on a sub-sample of 85 lines in the third one. Using composite interval mapping with a LOD threshold of 2.5, the total number of QTLs detected in all trials combined was 11 for leaf rolling, 10 for leaf drying, 11 for relative water content and 10 for relative growth rate under stress. Some of these QTLs were common across traits. Among the eleven possible QTLs for leaf rolling, three QTLs (on chromosomes 1, 5 and 9) were common across the three trials and four additional QTLs (on chromosomes 3, 4 and 9) were common across two trials. One QTL on chromosome 4 for leaf drying and one QTL on chromosome 1 for relative water content were common across two trials while no common QTL was identified for relative growth rate under stress. Some of the QTLs detected for leaf rolling, leaf drying and relative water content mapped in the same places as QTLs controlling root morphology, which were identified in a previous study involving the same population. Some QTL identified here were also located similarly with other QTLs for leaf rolling as reported from other populations. This study may help to chose the best segments for introgression into rice varieties and improvement of their drought resistance.  相似文献   

6.
A lowland rice variety (Zhenshan97B) was crossed with an upland variety (IRAT109) to construct a set of recombinant inbred lines (RILs). The population was evaluated under both well-watered (control) and drought-stress (drought) conditions for 2 years. Panicle water potential (PWP), panicle length (PL), grain number per plant (GNP), primary branch number (PBN), second branch number (SBN), spikelet density (SPD), and dry grain weight per plant (DGW) were measured. Phenotypic correlation and path analysis were used to interpret the ranking of importance of other panicle traits to grain yield. Comparison of such rankings under control and drought conditions showed varied responses of panicle traits to drought stress. It was indicated that GNP was an important contributor to DGW under control, and even more important under drought. Thirty-two quantitative trait loci (QTLs) for panicle traits and dry grain weight were identified, with contribution rates ranging from 3.33% to 22.66%. Eleven epistatic QTLs were detected. Cases of collocated QTLs under control and drought were found for PL, SPD, GNP, PBN, and SBN, but not for DGW and PWP. The effectiveness of selection under normal and stressed conditions is discussed.  相似文献   

7.
Rice is one of the most important food crop drastically affected by drought in lowland rice ecosystem. Dissecting out the traits of importance and genomic regions influencing the response of drought tolerance and yield traits on grain yield will aid the breeders to know the genetic mechanism of drought tolerance of rice leads to the development of drought tolerant varieties. Grain yield and its components on drought situation of recombinant inbred population (IR 58821/IR 52561) were investigated under lowland managed stress situation in 2003 and 2004 by given importance to the relative water content. Water deficit resulted in significant effect on phenology and grain yield. Best lines were selected for further varietal development programme. Variability studies showed the traits viz., days to 70% relative water content, leaf rolling, leaf drying, harvest index, biomass yield and grain yield offer high scope for improvement for drought tolerance by way of simple selection technique. Correlation and path analysis indicated that, to harness high yielding combined with drought tolerance breeders should give selection pressure on relative water content, panicle length, grains per panicle, harvest index, biomass yield, root/shoot ratio and root length in positive direction, and low scores of leaf rolling, leaf drying and drought recovery rate. Analysis of quantitative trait loci for drought tolerance, yield and its components allowed the identification of 38 regions associated with both drought tolerant and yield traits. Out of these, 18 were closely linked with DNA markers could be used for marker assisted selection in breeding for drought tolerance in rice. Pleiotropism and G × E effects interaction were noticed in some of the traits. Parent IR 58821 contributed favorable alleles for the entire drought related and most of the yield component traits. Identification of traits of importance and their nature of relationship by morphological and molecular level under lowland condition will be useful to improve drought tolerance of rice.  相似文献   

8.
水稻株高构成因素的QTL剖析   总被引:5,自引:0,他引:5  
利用水稻籼粳杂交 (圭 6 30× 0 2 42 8) F1 的花药离体培养建立的一个含 81个 DH家系的作图群体 ,对水稻株高构成因素 (穗长、第 1节间长、……、第 5节间长 )进行基因定位。DH群体中株高构成因素均呈正态分布。相邻的构成因素间呈极显著的正相关 ,而相距较远的构成因素间的相关较弱或不显著。采用 QTL(Quantitative trait lo-cus)分析 ,定位了影响株高构成因素的 6个 QTL:qtl7同时影响穗长和第 1、2、3节间长 ,qtl1 和 qtl2 同时影响第 4和第 5节间长 ,qtl1 0 a和 qtl1 0 b仅影响第 1节间长 ,qtl3 仅影响第 3节间长。采用 QTL 互作分析 ,检测到 19对显著的互作 ,每个构成因素受 2个或 2个以上的 QTL 互作对的影响。并且还发现 ,同一个 QTL 互作对可能影响不同的性状 ,以及一个 QTL 可以分别与不同的 QTL 产生互作而影响同一个性状或影响不同的性状 ,但总的看来 ,加性效应是主要的。这些结果揭示了株高构成因素间相关的遗传基础 ,在水稻育种中运用这些 QTL 将有助于对株高 ,以及对穗长和上部节间长度进行精细的遗传调控。  相似文献   

9.
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.  相似文献   

10.
To investigate the genetic basis of drought tolerance in soybean ( Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefeng1 (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and D1b, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.  相似文献   

11.
光合产物是水稻产量的主要来源,因此对水稻后期功能叶片尤其是剑叶形态生理性状的遗传分析对水稻高产育种很重要。利用来源于籼/粳交后代的重组自交系群体为材料对水稻剑叶形态(叶片长、宽、面积)和生理性状(叶绿度、持绿性)进行了QTL定位,并对这些性状与产量、产量性状的相关性进行了分析。两年分别定位了17、6和14个与剑叶形态性状、叶绿度和持绿性有关的QTL,其中10个QTL在两年中共同检测到。相关分析表明,较大的剑叶可以增加穗粒数并显著增加产量,然而叶绿度和持绿性与产量、产量性状无关或呈显著负相关。叶绿度与剑叶大小呈显著负相关以及籼/粳交群体后代半不育是叶绿度和持绿性与产量、产量性状无关或呈显著负相关的可能原因。染色体4上的RM255-RM349区域同时控制3个剑叶形态性状并且解释的变异也较大,该区域可用于遗传改良以提高水稻产量。染色体3上的RM422-RM565区域重叠了3个与持绿性有关的QTL,它们对产量的贡献有待于通过构建近等基因系进行深入研究。  相似文献   

12.
Photosynthesis of carbohydrate is the primary source of grain yield in rice (Oryza sativa L.). It is important to genetically analyze the morphological and the physiological characteristics of functional leaves, especially flag leaf, in rice improvement. In this study, a recombinant inbred population derived from a cross between an indica (O. sativa L. ssp. indica) cultivar and a japonica (O. sativa L. ssp. japonica) cultivar was employed to map quantitative traits loci (QTLs) for the morphological (i.e., leaf length, width, and area) and physiological (i.e., leaf color rating and stay-green) characteristics of flag leaf and their relationships with yield and yield traits in 2003 and 2004. A total of 17 QTLs for morphological traits (flag leaf length, width, and area), 6 QTLs for degree of greenness and 14 QTLs for stay-green-related traits (retention-degrees of greenness, relative retention of greenness, and retention of the green area) were resolved, and 10 QTLs were commonly detected in both the years. Correlation analysis revealed that flag leaf area increased grain yield by increasing spikelet number per panicle. However, the physiological traits including degree of greenness and stay-green traits were not or negatively correlated to grain yield and yield traits, which may arise from the negative relation between degree of greenness and flag leaf size and the partial sterility occurred in a fraction of the lines in this population. The region RM255-RM349 on chromosome 4 controlled the three leaf morphological traits simultaneously and explained a large part of variation, which was very useful for genetic improvement of grain yield. The region RM422-RM565 on chromosome 3 was associated with the three stay-green traits simultaneously, and the use of this region in genetic improvement of grain yield needs to be assessed by constructing near-isogenic lines.  相似文献   

13.
用RFLP标记剖析水稻穗颈维管束及穗部性状的遗传基础   总被引:7,自引:0,他引:7  
采用籼、粳亚种间杂种F1(圭630×02428)花药培养获得的DH群体,对水稻穗颈大、小维管束数和倒数第2节间大、小维管束数等4个维管束性状,以及一、二次枝梗数,每穗颖花数3个穗部性状进行QTL分析,共检测到16个QTLs,其中有7个QTLs的加性效应较大,单个QTL的贡献率在20%以上。发现有4个QTLs成簇分布于第1染色体从RZ776到C11的大约35cM的区段上,来源于亲本"圭630"的这一染色体区段对穗颈大维管束、第2节间大维管束、第2节间小维管束和二次枝梗数4个性状的表达均具有增效作用。还讨论了利用分子标记辅助选择聚合增效QTLs、实现穗颈维管束性状遗传改良的策略。  相似文献   

14.
水稻产量库相关穗部性状的遗传分析   总被引:17,自引:1,他引:16  
收人李源于珍汕97/明恢63的重组系群体中与产量库容有关的10个穗部性状的表现型数据。总体上,每穗颖花数与每穗二次枝梗数、每个二次枝梗上的颖花数、颖花密度有更大的相关性。对所研究的10个性状,两年间共检测到53个QTLs。约43.4%的QTLs能在两年同时检测到。5个染色体区域(第1染色体上G359-RG532和C567-C86-RG236,第2染色体上R712-RM29,第6染色体上P-RG424,第10染色体上C148-RM258)分别对多个穗部性状表现出效应。结果显示相关性状的QTLs大致定位在相似的染色体区域,这表明基因的多效性或紧密连锁是穗部性状间相关的遗传基因。在检测到的大量2位点互作对中,约18.2%在两年都能被检测到。不同性状的共同互作对的比例为8.7%~32.6%。在两年都能检测到2位点组合中,约26.7%的组合同时影响着多个性状,表现出多效效应。结果表明每个性状都由数个QTL、基因型与环境互作、大量的上位性互作所控制。  相似文献   

15.
Drought is a major constraint to rice (Oryza sativa L.) production in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid our understanding of the genetic mechanism of drought tolerance (DT) of rice and the development of DT varieties. Grain yield (GY) and its components of a recombinant inbred population developed from a lowland rice and an upland rice were investigated under different water levels in 2003 and 2004 in a rainout DT screening facility. Correlation and path analysis indicated that spikelet fertility (SF) was particularly important for grain yield with direct effect (P=0.60) under drought stress, while spikelet number per panicle (SN) contributed the most to grain yield (P=0.41) under well-watered condition. A total of 32 quantitative trait loci (QTLs) for grain yield and its components were identified. The phenotypic variation explained by individual QTLs varied from 1.29% to 14.76%. Several main effect QTLs affecting SF, 1,000-grain weight (TGW), panicle number (PN), and SN were mapped to the same regions on chromosome 4 and 8. These QTLs were detected consistently across 2 years and under both water levels in this study. Several digenic interactions among yield components were also detected. The identification of genomic regions associated with GY and its components under stress will be useful to improve drought tolerance of rice by marker-aided approaches.G. H. Zou and H. W. Mei contribute equally to this work.  相似文献   

16.
Uniformity of stem height in rice directly affects crop yield potential and appearance, and has become a vital index for rice improvement. In the present study, a doubled haploid (DH) population, derived from a cross between japonica rice Chunjiang 06 and indica rice TN1 was used to analyze the quantitative trait locus (QTL) for three related traits of panicle-layer-uniformity; that is, the tallest panicle height, the lowest panicle height and panicle layer disuniformity in two locations: Hangzhou (HZ) and Hainan (HN). A total of 16 QTLs for three traits distributed on eight chromosomes were detected in two different environments. Two QTLs, qTPH -4 and qTPH -8 were co-located with the QTLs for qLPH -4 and qLPH -8, which were only significant in the HZ environment, whereas the qTPH -6 and qLPH -6 located at the same interval were only significant in the HN environment. Two QTLs, qPLD -10-1 and qPLD -10-2, were closely linked to qTPH-10 , and they might have been at the same locus. One QTL, qPLD -3, was detected in both environments, explaining more than 23% of the phenotypic variations. The CJ06 allele of qPLD -3 could increase the panicle layer disuniformity by 9.23 and 4.74 cm in the HZ and HN environments. Except for qPLD -3, almost all other QTLs for the same trait were detected only in one environment, indicating that these three traits were dramatically affected by environmental factors. The results may be useful for elucidation of the molecular mechanism of panicle-layer-uniformity and marker assisted breeding for super-rice.  相似文献   

17.
栽培稻旱胁迫叶片相关性状的遗传解析   总被引:3,自引:0,他引:3  
利用籼稻窄叶青8号(ZYQ8)和粳稻京系17(JX17)衍生的加倍单倍体(DH)群体127个株系,2002年在杭州采用田间断水法栽培,在水分胁迫下,对叶片的卷叶、相对含水量和电导率3个性状进行了评价和QTL分析。结果表明,3个性状在DH群体中均存在双向超亲分离,接近正态分布,受数量性状基因的控制;检测到影响这些性状的6个QTL,其中卷叶3个(qLR—1,qLR—5和qLR—11)、相对含水量2个(qRWC—1和qRWC—6和电导率1个(qERC—6)。旱胁迫时,目测卷叶方便易行,适于对大批品种或资源筛选,对抗旱栽培稻品种的筛选和利用具有一定的指导意义。  相似文献   

18.
The root-knot nematode Meloidogyne graminicola is an obligate biotrophic parasite and a major pest of rice (Oryza sativa) for which resistant varieties are not currently available. Quantitative trait loci (QTLs) for partial resistance to M. graminicola were identified using a mapping population based on two rice varieties, Bala x Azucena. Experiments were carried out to investigate the interactions between M. graminicola and these two varieties in terms of nematode establishment, reproduction and effect on rice yield. Nematode establishment was also assessed in the mapping population. Meloidogyne graminicola consistently caused more galling and had higher reproductive success in Azucena than in Bala. M. graminicola did not significantly reduce yield in Bala, but caused a yield reduction of almost half in Azucena, suggesting that the partial resistance to nematode establishment was related to nematode tolerance. A total of six significant or putative QTLs for nematode tolerance were detected. For two of the QTLs detected, Azucena was the donor of the tolerance alleles, suggesting it may be possible to breed plants with greater tolerance than Bala.  相似文献   

19.
Understanding the genetics underlying yield formation of wheat is important for increasing wheat yield potential in breeding programs. Nanda2419 was a widely used cultivar for wheat production and breeding in China. In this study, we evaluated yield components and a few yield-related traits of a recombinant inbred line (RIL) population created by crossing Nanda2419 with the indigenous cultivar Wangshuibai in three to four trials at different geographical locations. Negative and positive correlations were found among some of these evaluated traits. Five traits had over 50 % trial-wide broad sense heritability. Using a framework marker map of the genome constructed with this population, quantitative trait loci (QTL) were identified for all traits, and epistatic loci were identified for seven of them. Our results confirmed some of the previously reported QTLs in wheat and identified several new ones, including QSn.nau-6D for effective tillers, QGn.nau-4B.2 for kernel number, QGw.nau-4D for kernel weight, QPh.nau-4B.2 and QPh.nau-4A for plant height, and QFlw.nau-5A.1 for flag leaf width. In the investigated population, Nanda2419 contributed all QTLs associated with higher kernel weight, higher leaf chlorophyll content, and a major QTL associated with wider flag leaf. Seven chromosome regions were related to more than one trait. Four QTL clusters contributed positively to breeding goal-based trait improvement through the Nanda2419 alleles and were detected in trials set in different ecological regions. The findings of this study are relevant to the molecular improvement of wheat yield and to the goal of screening cultivars for better breeding parents.  相似文献   

20.
 Quantitative trait loci (QTLs) for grain quality, yield components and other traits were investigated in two Sorghum caudatum×guinea recombinant inbred line (RIL) populations. A total of 16 traits were evaluated (plant height, panicle length, panicle compactness, number of kernels/panicle, thousand-kernel weight, kernel weight/panicle, threshing percentage, dehulling yield, kernel flouriness, kernel friability, kernel hardness, amylose content, protein content, lipid content, germination rate and molds during germination and after harvest) and related to two 113- and 100-point base genetic maps using simple (SIM) and composite (CIM) interval mapping. The number, effects and relative position of QTLs detected in both populations were generally in agreement with the distributions, heritabilities and correlations among traits. Several chromosomal segments markedly affected multiple traits and were suspected of harbouring major genes. The positions of these QTLs are discussed in relation to previously reported studies on sorghum and other grasses. Many QTLs, depending on their relative effects and position, could be used as targets for marker-assisted selection and provide an opportunity for accelerating breeding programmes. Received: 14 February 1998 / Accepted: 4 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号