首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of the melting curve for the linear colE1 DNA has been obtained. To find the ColE1 DNA regions corresponding to peaks in the melting curve's fine structure, we fixed the melted DNA regions with glyoxal /12/. Electron-microscopic denaturation maps were obtained for nine temperature points within the melting range. Thereby the whole process of colE1 DNA melting was reconstructed in detail. Spectrophotometric and electron microscopic data were used for mapping the distribution of Gc-pairs over the DNA molecule. The most AT-rich DNA regions (28 and 37% of GC-pairs), 380 and 660 bp long resp., are located on both sides of the site of ColE1 DNA's cleavage by EcoR1 endonuclease. The equilibrium denaturation maps are compared with maps obtained by the method of Inman /20/ for eight points of the kinetic curve of ColE1 DNA unwinding by formaldehyde.  相似文献   

2.
To investigate the effects of heating rate on the DNA melting profile and to test the predictions of the theory of slow relaxation processes in DNA melting (1) concerning these effects, we obtained differential melting curves for the Bsp I C1 fragment of T7 DNA (1461 bp) and the Sma I-Eco RI fragment of Col E1 DNA (1291 bp) at heating rates of 0.05 and 0.5 deg/min. At low ionic strength (0.02 M Na+) the heating rate has been shown to affect the position of the third peak in melting curve for C1 fragment. According to the melting maps (2), this peak corresponds to the unwinding of the section between the end of the molecule and the region already melted. At high ionic strength (0.2 M Na+), when the melting of this DNA is reversible (3), the position of the peaks does not depend on the heating rate. In the case of the Col E1 DNA fragment the heating rate affects, as might be expected from the melting maps (4), only the last peak, as the melting of the last section is always nonequilibrium. The results of the study are in good qualitative agreement and in satisfactory quantitative agreement with the theoretical predictions (1).  相似文献   

3.
Precise recording of polyphasic optical melting curves was carried out for three kinds of bacteriophage lambda DNA differing in length (lambdac1857s7, lambdacIb2 and lambdacIb2b5). Each of denaturation steps in melting profiles was characterized by two parameters, the melting temperature and the relative size. Any difference in fine structures in melting profiles was not recognized between the intact lambdacI857s7DNA and the DNA fragmented into halves. The change in fine structures in melting profiles caused by the deletions of the b2 and b5 region agreed qualitatively well with the prediction based on the physical and the genetical maps of phage lambda chromosome. The combined results indicate that, first, the well-known linear relationship between melting temperature and G+C content may apply also to each of denaturation steps in polyphasic melting curves due to heterogeneity of nucleotide distribution in a single DNA species, and, second, the effect of molecular ends on melting fine structures can be neglected at moderate salt concentration (0.01 M less than or equal to Na+ less than or equal to 0.2 M) for such a high molecular weight DNA. The heterogeneous distribution of nucleotides was derived for lambdaDNA and for its b2 and b5 regions.  相似文献   

4.
5.
A previously elaborated technique for fixing a chosen partially melted state of DNA with glyoxal was used in a study of the melting process of the replicative form (RF III) of phi X174 DNA. Electron-microscopic maps corresponding to five points of the melting curve of RF III were obtained and compared with the theoretical melting maps obtained in (4) and (6). This comparison clearly shows that only rigorous calculations (4) and not the ones proposed by Azbel (6,7) correctly predict the course of RF III melting.  相似文献   

6.
The XmaI/PstI and XmaI DNA fragments of adenovirus SA7 oncogene and the adjacent region (16.7% of the physical map of SA7 left end DNA) were recloned in M13 bacteriophages mp8 and mp9 in order to obtain the singlestranded fragments EIa and EIb from the DNA region of monkey adenovirus SA7 located on the recombinant plasmid pASP carrying the DNA APstI fragment including the adenovirus SA7 oncogene.  相似文献   

7.
Differential melting curves (DMCs) of DNAs pA03 and pBR322 in solutions of different ionic strength (0.02 and 0.2M Na+) were obtained. A previously developed procedure of glyxal fixation of partially denatured DNA molecules at temperatures within the melting range was used to construct electron-microscopic melting maps for pBR322 and pAO3 plasmid DNA and for the replicative form of bacteriophage ?X174 DNA, allowing the melting of these DNA molecules to be followed in solutions of low (0.1 × SSC) and high (1 × SSC) ionic strength. In spite of the fact that the melting was at nonequilibrium at the low ionic strength, the melting maps for the two kinds of solutions practically coincided. Experimental data are compared with theoretical calculations based on the Fixman-Freire algorithm. The conclusion is that the melting pattern of these DNAs is, on the whole, correctly described by the theory, although there are appreciable differences between the theoretical and experimental differential melting curves. We have also determined the relation between the melting temperature of a region and its GC content, with allowances made for the boundary conditions of melting in 0.1 × SSC and 1 × SSC solutions, and have analyzed the theoretical shape of peaks of the DMCs.  相似文献   

8.
Only the deproteinized DNA preparations of the simian adenovirus of the type 7 (SA 7) exhibited transforming and tumorigenic activity. The complex of the SA7 DNA with terminal protein (TP) did not exhibit either transforming or tumorigenic activity in cell cultures. In contrast to the transforming potential the infectious titers of the DNA - TP complex for the monkey kidney cells were 30-50 times higher than those of pure DNA. Cleavage of the SA7 DNA by specific endonucleases enhanced the tumorigenic potential of pure DNA, suppressed its infectivity and did not affect the lack of transformation capacity of the DNA - TP complex. The onc-gene was localized in the left terminal fragment with the minimal size 4,3x10(6)D in the case of R.Sal I. The tumorigenic activity was found to decrease with an increase in the size of the DNA fragment containing the onc-gene.  相似文献   

9.
Treatment of hamster embryo cells with diverse classes of chemical carcinogens enhances transformation by a carcinogenic simian adenovirus, SA7. Virus transformed foci selected from plates pretreated with 3-methyl-cholanthrene (MCA), methyl methanesulfonate (MMS) or 7,12-dimethylbenz[a]anthracene (DMBA) and established as cell lines in culture, contained equivalent amounts of SA7 viral genome. However, hamster embryo cultures treated with MMS or nickel sulfate had increased amounts of SA7 DNA integrated into cellular DNA when examined 2--9 days after chemical treatment and viral inoculation. An increased uptake of SA7 DNA was demonstrated in hamster cells treated with MMS during DNA repair synthesis in cells retricted in scheduled DNA synthesis by amino acid deprivation; addition of virus after the repair period did not result in an increased integration of viral DNA. These data suggest that enhancement of viral oncogenesis by chemical carcinogens or mutagens may be related to the formation of additional attachment sites in cellular DNA for insertion of viral DNA, thereby increasing the probability of viral transformation.  相似文献   

10.
We have begun to characterize the genomic structure and replication of the baboon papovavirus simian agent 12 (SA12). We have defined a wild-type clone of SA12 (SA12 wt100) by plaque purification from a heterogeneous stock. The functional map of SA12 wt100 can be aligned with those of the other primate papovaviruses by assigning one of the two EcoRI sites as 0/1.0 map units. The origin of bidirectional viral DNA replication maps near 0.67 map units, consistent with the limits of sequences homologous to origin sequences in the other papovaviruses. DNA sequence analysis shows that the organization of the SA12 genome is similar to that of the other primate papovaviruses studied. The arrangement and sequence of functional elements in the origin of replication region, as well as the sequences of the N-terminal regions of early protein products, indicate that SA12 is most closely related to the human virus BK, next most closely related to JC virus, and less closely related to simian virus 40. Unlike BK virus, SA12 is capable of productive infection of African green monkey kidney cells.  相似文献   

11.
The integration of DNA of highly oncogenic simian adenovirus type 7 (SA7) and non-oncogenic human adenovirus type 6 (Ad6) into the genome of newborn rat kidney cells transformed by fragmented DNA preparations was studied using reassociation kinetics and spot hybridization. Transforming DNA was fragmented with the specific endonuclease SalI (SA7) and BglII (Ad6). In contrast to the cell transformation by intact viral DNA, transformation by fragmented DNA resulted in integration into the cellular genome of not only the lefthand fragment with the oncogene but also of other regions of the viral genome. Additionally integrated fragments were stable and preserved during numerous passages of cells lines, although they were no expressed, at least in the case of the Ad6-transformed cell line. The integration of the fragments of SA7 DNA was accompanied by loss of 25-50% of the mass of each fragment. Adding the linear form of the pBR322 plasmid to the preparation of transforming Ad6 DNA also contributed to its cointegration into the genome of the transformed cell. This technique of cell cotransformation with any foreign DNAs together with the viral oncogens may be used as an equivalent of an integration vector for eukaryotic cells.  相似文献   

12.
Four rotavirus SA11 temperature-sensitive (ts) mutants and seven rotavirus RRV ts mutants, isolated at the National Institutes of Health (NIH) and not genetically characterized, were assigned to reassortment groups by pairwise crosses with the SA11 mutant group prototypes isolated and characterized at Baylor College of Medicine (BCM). Among the NIH mutants, three of the RRV mutants and all four SA11 mutants contained mutations in single reassortment groups, and four RRV mutants contained mutations in multiple groups. One NIH mutant [RRVtsK(2)] identified the previously undefined 11th reassortment group (K) expected for rotavirus. Three NIH single mutant RRV viruses, RRVtsD(7), RRVtsJ(5), and RRVtsK(2), were in reassortment groups not previously mapped to genome segments. These mutants were mapped using classical genetic methods, including backcrosses to demonstrate reversion or suppression in reassortants with incongruent genotype and temperature phenotype. Once located to specific genome segments by genetic means, the mutations responsible for the ts phenotype were identified by sequencing. The reassortment group K mutant RRVtsK(2) maps to genome segment 9 and has a Thr280Ileu mutation in the capsid surface glycoprotein VP7. The group D mutant RRVtsD(7) maps to segment 5 and has a Leu140Val mutation in the nonstructural interferon (IFN) antagonist protein NSP1. The group J mutant RRVtsJ(5) maps to segment 11 and has an Ala182Gly mutation affecting only the NSP5 open reading frame. Rotavirus ts mutation groups are now mapped to 9 of the 11 rotavirus genome segments. Possible segment locations of the two remaining unmapped ts mutant groups are discussed.  相似文献   

13.
The structure of the transgene has been analysed in a new series of experiments on the transfer of adenovirus SA7 DNA into the mice zygotes by microinjection technique. The previous data on SA7 DNA elimination from the genomes of different organs (sceletal muscles, heart, tail) have been confirmed and detailed for the F0 and F1 generations of transgenic animals. The left end of adenoviral genome has been shown to be predominantly transfered after microinjections of SA7 DNA into the mice zygotes.  相似文献   

14.
Treatment of Syrian hamster embryo cells with diverse classes of chemical carcinogens enhanced transformation by a carcinogenic simian adenovirus, SA7. Optimal enhancement was a function of time of chemical addition in relation to time of virus addition and cell transfer. Aflatoxin B1 (AFB1) and the polycyclic hydrocarbons, benzo(a)pyrene (B(a)P), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz(a)anthracene (DMBA) enhanced SA7 transformation when added prior to virus, but inhibited transformation when added after virus adsorption and cell transfer. The enhancement of SA7 transformation was maximal when cytosine arabinoside, caffeine and 6-acetoxy-benzo(a)pyrene (6-ac-B(a)P) were added after virus, but minimal when added before virus. A third class of chemicals, including β-propiolactone (β-PL), methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (Ac-AAF), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and methylazoxymethanol acetate (MAM-ac), enhanced SA7 transformation added before, or after, virus inoculation and cell transfer. All chemicals, which induced changes in DNA sedimentation in alkaline sucrose gradients and unscheduled DNA (repair) synthesis in hamster cells, increased the frequency of SA7 transformation. However, several chemicals such as dibenz(a,h)anthracene (DB(a,h)A), benzo(e)pyrene (B(e)P), cytosine arabinoside, and caffeine enhanced SA7 transformation but did not induce DNA sedimentation changes or repair. Chemicals that cause DNA damage, which can be repaired by hamster cells, may enhance viral transformation by providing additional sites for integration of viral DNA during the repair process. Chemicals that apparently do not induce DNA repair synthesis may enhance viral transformation by incorporation of viral DNA into gaps in cell DNA at sites of unrepaired damage during scheduled DNA synthesis.  相似文献   

15.
The distribution of the stability of the double helical structure along the whole DNA of fdphage and its restriction fragments is calculated. In this calculation, Poland's method, which has been established as a rigorous algorithm for taking the base sequence explicitly into consideration, is used. The molecular thermodynamic parameters in the calculation have been determined so as to best reproduce the melting profile of the DNA and its fragments. The results, which are presented as melting maps, show fairly good agreement with those experimentally obtained by the present authors earlier. A close correlation with genes in the genetic map is apparent for some cooperatively melting regions observed in the stability map.  相似文献   

16.
The hypothesis about the role of partial denaturation in DNA retardation during its electrophoresis in denaturing gel /1,2/ was tested. We used partially melted DNA molecules in which the size of the melted regions and their location were known. They were obtained through glyoxal treatment of the melted regions by a procedure allowing the denatured state to be fixed at any point within the melting range. The approach and the availability of the melting maps of DNAs made it possible to investigate DNA molecules differing in length and in the size of the melted regions. The presence of a denatured region at the end of the molecule or inside of it was shown to decrease its electrophoretic mobility, the effect depending on the size of the melted region and on the DNA length. On the basis of the experimental results an explanation is proposed for the cause of retardation in the case of partially denatured DNA.  相似文献   

17.
The ss-DNA of the (+) and (-) chains of Ela DNA fragment was obtained by hydrolysis of the recombinant bacteriophages M13 mp8G and mp9G (where G is 1-1750 bp:, E1a region of oncogene SA7) in complexes with the 16 bp oligonucleotides containing AluI and BspRI sites of restriction and sequences complementary to E1a SA7. The obtained fragments overlap the E1a zones associated with the immortalizing potential of SA7.  相似文献   

18.
Differential melting profiles and denaturation maps are calculated for fdDNA whose sequence of nucleotides has been determined recently. The melting profiles for the total DNA and a number of its restriction fragments are compared with experimental data taken from literature. The comparison enables one to correlate a number of peaks on experimental melting profiles with the melting out of concrete regions of the nucleotide sequence. For three fragments very strong end effects are demonstrated on both theoretical and experimental profiles. These anomalous end effects are shown to be connected with a region highly enriched with AT-pairs. A possible influence of the heterogeneity of stacking interaction on the results obtained is discussed in detail.  相似文献   

19.
The investigated polymers, poly(sebacic acid-co-ricinoleic acid) containing > or =70% ricinoleic acid, may be injected via a 22 gauge needle and become gel upon contact with aqueous medium, both in vitro and in vivo. Various properties of the polymers including viscosity, thermal analysis, and in vivo behavior, before and after exposure to aqueous medium, were determined. These polymers were observed using scanning electron microscopy (SEM) at dry and wet states. It was found that the viscosity and melting temperature of P(SA:RA) increased after exposure to buffer. The viscosity at 37 degrees C of P(SA:RA)3:7 had the highest increase: from 4200 cP before to 8940 cP after exposure to buffer; in the case of P(SA:RA)25:75 before exposure to buffer the viscosity was 1150 cP while after it raised to 3200 cP. The viscosity of P(SA:RA)2:8 also increased from 400 cP before exposure to buffer to 1000 cP after. On the other hand polymer without sebacic acid, (poly(ricinoleic acid)), did not show gelation properties. Thermal analysis also showed an increase in the melting point of the polymers exposed to the aqueous medium during the first 24 h of incubation. Images obtained by SEM showed formation of a three-dimensional network in polymers exposed to buffers. When injected into animals, P(SA:RA) forms a solid implant in the injection site already at 8 h postinjection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号