首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The intracellular folding of the human immunodeficiency virus type 1 gp120 has been assessed by analyzing the ability of the glycoprotein to bind to the viral receptor CD4. Pulse-chase experiments revealed that the glycoprotein was initially produced in a conformation that was unable to bind to CD4 and that the protein attained the appropriate tertiary structure for binding with a half-life of approximately 30 min. The protein appears to fold within the rough endoplasmic reticulum, since blocking of transport to the Golgi apparatus by the oxidative phosphorylation inhibitor carbonyl cyanide m-chlorophenylhydrazone did not appear to perturb the folding kinetics of the molecule. The relatively lengthy folding time was not due to modification of the large number of N-linked glycosylation sites on gp120, since inhibition of the first steps in oligosaccharide modification by the inhibitors deoxynojirimycin or deoxymannojirimycin did not impair the CD4-binding activity of the glycoprotein. However, production of the glycoprotein in the presence of tunicamycin and removal of the N-linked sugars by endoglycosidase H treatment both resulted in deglycosylated proteins that were unable to bind to CD4, suggesting in agreement with previous results, that glycosylation contributes to the ability of gp120 to bind to CD4. Interestingly, incomplete endoglycosidase H treatment revealed that a partially glycosylated glycoprotein could bind to the receptor, implying that a subset of glycosylation sites, perhaps some of those conserved in different isolates of human immunodeficiency virus type 1, might be important for binding of the viral glycoprotein to the CD4 receptor.  相似文献   

2.
The third variable (V3) domain has been implicated in determining the human immunodeficiency virus (HIV) phenotype, including fusion capacity and monocytotropism. In a large set of primary HIV type 1 (HIV-1) isolates, V3 sequence analysis revealed that fast-replicating, syncytium-inducing isolates contained V3 sequences with a significantly higher positive charge than those of slow-replicating, non-syncytium-inducing monocytotropic isolates. It appeared that these differences in charge could be attributed to highly variable amino acid residues located on either side of the V3 loop, midway between the cysteine residues and the central GPG motif. In non-syncytium-inducing monocytotropic isolates, these residues were negatively charged or uncharged, whereas in syncytium-inducing nonmonocytotropic isolates, either one or both were positively charged. The substitutions at these positions result in changes in the predicted secondary structure of the V3 loop. Our data suggest that two amino acid residues in the highly variable V3 domain are responsible for phenotype differences and point to conformational differences in V3 loops from phenotypically distinct HIV-1 isolates.  相似文献   

3.
C D Weiss  J A Levy    J M White 《Journal of virology》1990,64(11):5674-5677
The oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein (gp120) was examined by treating infectious virions with chemical cross-linking agents and subjecting the protein to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and velocity centrifugation. Immunoblots of cross-linked samples revealed three gp120 bands and an approximately threefold shift in gp120 sedimentation. Our finding of cross-linking solely between gp120 suggests that the gp120 subunits are closely associated in the native envelope structure.  相似文献   

4.
A number of linear and conformation-dependent neutralizing monoclonal antibodies (MAbs) have been mapped to the first and second variable (V1 and V2) domains of human immunodeficiency virus type 1 (HIV-1) gp120. The majority of these MAbs are as effective at neutralizing HIV-1 infectivity as MAbs to the V3 domain and the CD4 binding site. The linear MAbs bind to amino acid residues 162 to 171, and changes at residues 183/184 (PI/SG) and 191/192/193 (YSL/GSS) within the V2 domain abrogate the binding of the two conformation-dependent MAbs, 11/68b and CRA-4, respectively. Surprisingly, a change at residue 435 (Y/H or Y/S), in a region of gp120 near the CD4 binding site (M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. Haseltine, and J. Sodroski, Science 237:1351-1355, 1987; L. A. Lasky, G. M. Nakamura, D. H. Smith, C. Fennie, C. Shimasaki, E. Patzer, P. Berman, T. Gregory, and D. Capon, Cell 50:975-985, 1987; and U. Olshevsky, E. Helseth, C. Furman, J. Li, W. Haseltine, and J. Sodroski, J. Virol. 64:5701-5707, 1990), abrogated gp120 recognition by both of the conformation-dependent MAbs. However, both MAbs 11/68b and CRA-4 were able to bind to HIV-1 V1V2 chimeric fusion proteins expressing the V1V2 domains in the absence of C4, suggesting that residues in C4 are not components of the epitopes but that amino acid changes in C4 may affect the structure of the V1V2 domains. This is consistent with the ability of soluble CD4 to block 11/68b and CRA-4 binding to both native cell surface-expressed gp120 and recombinant gp120 and suggests that the binding of the neutralizing MAbs to the virus occurs prior to receptor interaction. Since the reciprocal inhibition, i.e., antibody inhibition of CD4-gp120 binding, was not observed, the mechanism of neutralization is probably not a blockade of virus-receptor interaction. Finally, we demonstrate that linear sequences from the V2 region are immunogenic in HIV-1-infected individuals, suggesting that the primary neutralizing response may be directed to both V2 and V3 epitopes.  相似文献   

5.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

6.
M W Cho  R Shibata    M A Martin 《Journal of virology》1996,70(10):7318-7321
We have recently reported the isolation and molecular cloning of a human immunodeficiency virus type 1 isolate (HIV-1 DH125) that exhibits rapid replication kinetics and marked cytopathicity in both human and chimpanzee peripheral blood mononuclear cells (PBMC). To identify the viral determinants responsible for infectivity of chimpanzee PBMC, chimeric viruses containing the following components were constructed: (i) the entire envelope gene; (ii) gp120 sequences; (iii) gp41 sequences; and (iv) individual or various combinations of the gp120 variable regions of HIV-1 DH125 inserted into the backbone of another HIV-1 isolate (HIV-1 AD8), which is unable to infect chimpanzee PBMC. Analyses of virus replication kinetics in human and chimpanzee PBMC revealed that gp120 contains determinants which confer infectivity for chimpanzee PBMC and that the capacity to establish such an infection requires the cooperative interaction between multiple variable regions of the HIV-1 DH125 gp120.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

8.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

9.
Two monoclonal antibodies designated BAT085 and G3-136 were raised by immunizing BALB/c mice with gp120 purified from human immunodeficiency virus type 1 (HIV-1) IIIB-infected H9 cell extracts. Among three HIV-1 laboratory isolates (IIIB, MN, and RF), BAT085 neutralized only IIIB infection of CEM-SS cells, whereas G3-136 neutralized both IIIB and RF. These antibodies also neutralized a few primary HIV-1 isolates in the infection of activated human peripheral blood mononuclear cells. In indirect immunofluorescence assays, BAT085 bound to H9 cells infected with IIIB or MN, while G3-136 bound to H9 cells infected with IIIB or RF, but not MN. Using sequence-overlapping synthetic peptides of HIV-1 IIIB gp120, the binding site of BAT085 and G3-136 was mapped to a peptidic segment in the V2 region (amino acid residues 169 to 183). The binding of these antibodies to immobilized gp120 was not inhibited by the antibodies directed to the principal neutralization determinant in the V3 region or to the CD4-binding domain of gp120. In a competition enzyme-linked immunosorbent assay, soluble CD4 inhibited G3-136 but not BAT085 from binding to gp120. Deglycosylation of gp120 by endo-beta-N-acetylglucosaminidase H or reduction of gp120 by dithiothreitol diminished its reactivity with G3-136 but not with BAT085. These results indicate that the V2 region of gp120 contains multiple neutralization determinants recognized by antibodies in both a conformation-dependent and -independent manner.  相似文献   

10.
D Long  J F Berson  D G Cook    R W Doms 《Journal of virology》1994,68(9):5890-5898
Human immunodeficiency virus type 1 (HIV-1) infects some cell types which lack CD4, demonstrating that one or more alternative viral receptors exist. One such receptor is galactosylceramide (GalCer), a glycosphingolipid distributed widely in the nervous system and in colonic epithelial cells. Using a liposome flotation assay, we found that the HIV-1 surface glycoprotein, gp120, quantitatively bound to liposomes containing GalCer but not to liposomes containing phospholipids and cholesterol alone. Binding was saturable and was inhibited by preincubating liposomes with anti-GalCer antibodies. We observed less efficient binding of gp120 to liposomes containing lactosylceramide, glucosylceramide, and galactosylsulfate, whereas no binding to liposomes containing mixed gangliosides, psychosine, or sphingomyelin was detected. Binding to GalCer was rapid, largely independent of temperature and pH, and stable to conditions which remove most peripheral membrane proteins. By contrast, gp120 bound to lactosylceramide could be removed by 2 M potassium chloride or 3 M potassium thiocyanate, demonstrating a less stable interaction. Removal of N-linked oligosaccharides on gp120 did not affect binding efficiency. However, as previously observed for CD4 binding, heat denaturation of gp120 prevented binding to GalCer. Finally, binding was critically dependent on the concentration of GalCer in the target membrane, suggesting that binding to glycolipid-rich domains occurs and that GalCer conformation may be important for gp120 recognition.  相似文献   

11.
Monoclonal antibodies (MAbs) were obtained by immunizing mice with synthetic peptides corresponding to the third variable (V3) or the third conserved (C3) domain of the external envelope protein (gp120) of human immunodeficiency virus type 2 (HIV-2ROD). One MAb, designated B2C, which was raised against V3 peptide NKI26, bound to the surface of HIV-2-infected cells but not to their uninfected counterparts. B2C was capable of neutralizing cell-free and cell-associated virus infection in an isolate-specific fashion. The antibody-binding epitope was mapped to a 6-amino-acid peptide in the V3 variable domain which had the core sequence His-Tyr-Gln. Two MAbs, 2H1B and 2F19C, which were raised against the C3 peptide TND27 reacted with gp120 of HIV-2ROD in a Western immunoblot assay. The C3 epitopes recognized by these two MAbs appeared inaccessible because of their poor reactivity in a surface immunofluorescence assay. Although partial inhibition of syncytium formation was observed in the presence of the anti-C3 MAbs, their neutralizing activity appeared weak. Finally, the effects of these MAbs against CD4-gp120 binding were assessed. Partial inhibition of CD4-gp120 binding was observed in the presence of high concentrations of B2C. On the other hand, no inhibition of CD4-gp120 binding was observed in the presence of anti-C3 MAbs. Since complete neutralization could be achieved at a concentration corresponding to that of partial binding inhibition by B2C, some different mechanisms may be involved in the B2C-mediated neutralization. These results, taken together, indicated that analogous to the function of the V3 region of HIV-1, the V3 region of HIV-2ROD contained at least a type-specific fusion-inhibiting neutralizing epitope. In this respect, the V3 sequence of HIV-2 may be a useful target in an animal model for HIV vaccine development.  相似文献   

12.
The domains of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein that are required for envelope function have been partially characterized. Little is known, however, about the nature of the interactions between these domains. To identify regions of the HIV-1 envelope glycoprotein that are involved in interactions necessary for proper envelope function, we constructed a series of 14 envelope recombinants between the env genes of two HIV-1 isolates. The envelope chimeras were examined for their ability to induce syncytia, to be proteolytically processed, and to function during a spreading viral infection. Our results demonstrate that the exchange between the two isolates of the first and second hypervariable regions (V1/V2) of gp120 results in defects in envelope glycoprotein processing, syncytium formation, and infectivity. Long-term passage of cultures infected with virus bearing a V1/V2 chimeric envelope glycoprotein leads to the emergence of a revertant virus with replication characteristics comparable to those of the wild type. Analysis of the revertant indicated that an Ile-->Met change in the C4 region of gp120 (between hypervariable regions V4 and V5) is responsible for the revertant phenotype. This single amino acid change restores infectivity without significantly affecting gp160 processing, CD4 binding, or the levels of virion-associated gp120. While the Ile-->Met change in C4 greatly enhances the fusogenic potential of the V1/V2 chimeric envelope glycoprotein, it has a detrimental effect on syncytium formation when analyzed in the context of the wild-type envelope. These results suggest that an interaction required for proper envelope glycoprotein function occurs between the V1/V2 and C4 regions of gp120.  相似文献   

13.
A soluble form of recombinant gp120 of human immunodeficiency virus type 1 was used as an immunogen for production of murine monoclonal antibodies. These monoclonal antibodies were characterized for their ability to block the interaction between gp120 and the acquired immunodeficiency syndrome virus receptor, CD4. Three of the monoclonal antibodies were found to inhibit this interaction, whereas the other antibodies were found to be ineffective at blocking binding. The gp120 epitopes which are recognized by these monoclonal antibodies were mapped by using a combination of Western blot (immunoblot) analysis of gp120 proteolytic fragments, immunoaffinity purification of fragments of gp120, and antibody screening of a random gp120 gene fragment expression library produced in the lambda gt11 expression system. Two monoclonal antibodies which blocked gp120-CD4 interaction were found to map to adjacent sites in the carboxy-terminal region of the glycoprotein, suggesting that this area is important in the interaction between gp120 and CD4. One nonblocking antibody was found to map to a position that was C terminal to this CD4 blocking region. Interestingly, the other nonblocking monoclonal antibodies were found to map either to a highly conserved region in the central part of the gp120 polypeptide or to a highly conserved region near the N terminus of the glycoprotein. N-terminal deletion mutants of the soluble envelope glycoprotein which lack these highly conserved domains but maintain the C-terminal CD4 interaction sites were unable to bind tightly to the CD4 receptor. These results suggest that although the N-terminal and central conserved domains of intact gp120 do not appear to be directly required for CD4 binding, they may contain information that allows other parts of the molecule to form the appropriate structure for CD4 interaction.  相似文献   

14.
A series of deletions was introduced into the CA domain of the human immunodeficiency virus type 1 Gag polyprotein to examine its role in virus particle and core formation. The mutations resulted in two phenotypes, indicating the existence of two functionally distinct regions within the CA domain. Deletions within a conserved stretch of 20 amino acids referred to as the major homology region (MHR) and deletions C terminal to this region blocked virus replication and significantly reduced the ability to form viral particles. Deletions N terminal to the MHR also prevented virus replication, but the mutants retained the ability to assemble and release viral particles with the same efficiency as the wild-type virus. The mutant particles contained circular rather than cone-shaped cores, and while they were of a density similar to that of wild-type particles, they were more heterogeneous in size. These results indicate that CA domain sequences N terminal to the MHR are essential for the morphogenesis of the mature cone-shaped core.  相似文献   

15.
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies.  相似文献   

16.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

17.
The major envelope glycoproteins gp120 and gp41 of human immunodeficiency virus type 1, the causative agent for human AIDS, contain numerous N-linked oligosaccharides. We report here our discovery that N-acetylglucosamine residues within the complex-type N-linked oligosaccharides of both gp120 and its precursor, gp160, are sulfated. When human Molt-3 cells persistently infected with human T-cell leukemia virus IIIB were metabolically radiolabeled with 35SO4, gp160, gp120, and to some extent gp41 were radiolabeled. The 35SO4-labeled oligosaccharides were quantitatively released by N-glycanase treatment and were bound by immobilized Ricinus communis agglutinin I, a lectin that binds to terminal beta-galactosyl residues. The kinetics of release of sulfate upon acid hydrolysis from 35SO4-labeled gp120 indicate that sulfation occurs in a primary sulfate ester linkage. Methylation analysis of total glycopeptides from Molt-3 cells metabolically radiolabeled with [3H]glucosamine demonstrates that sulfation occurs at the C-6 position of N-acetylglucosamine. Fragmentation of the gp120-derived 35SO4-labeled glycopeptides by treatment with hydrazine and nitrous acid and subsequent reduction generated galactosyl-anhydromannitol-6-35SO4, which is the expected reaction product from GlcNAc-6-sulfate within a sulfated lactosamine moiety. Charge analysis of the [3H]galactose- and [3H]glucosamine-labeled glycopeptides from gp120 and gp160 indicates that approximately 14% of the complex-type N-linked oligosaccharides are sulfated.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) entry is triggered by the interaction of the gp120 envelope glycoprotein with a cellular chemokine receptor, either CCR5 or CXCR4. We have identified different mutations in human CXCR4 that prevent efficient infection by one HIV-1 strain (NDK) but not another (LAI) and sought to define these strain-dependent effects at the gp120 level. The lack of activity toward the NDK strain of the HHRH chimeric CXCR4 in which the second extracellular loop (ECL2) derived from the rat CXCR4 and of CXCR4 with mutations at an aspartic acid in ECL2 (D193A and D193R) was apparently due to the sequence of the third variable loop (V3) of gp120, more precisely, to its C-terminal part. Indeed, substitution of the LAI V3 loop or only its C-terminal part in the NDK gp 120 context was sufficient to restore usage of the HHRH, D193A, and D193R receptors. The same result was achieved upon mutation of a single lysine residue of the NDK V3 loop to alanine (K319A) but not to arginine (K319R). These results provide a strong case for a direct interaction between the gp120 V3 loop and the ECL2 domain of CXCR4. By contrast, V3 substitutions had no effect on the inability of NDK to infect cells via a mutant CXCR4 in which the amino-terminal extracellular domain (NT) is deleted. In experiments with a set of chimeric NDK-LAI gp120s, the V1/V2 region from LAI gp120 was both necessary and sufficient for usage of the NT-deleted CXCR4. Different variable domains of gp120 can therefore cooperate for a functional interaction with CXCR4.  相似文献   

19.
Dey AK  Khati M  Tang M  Wyatt R  Lea SM  James W 《Journal of virology》2005,79(21):13806-13810
We recently described the isolation and structural characterization of 2'-fluoropyrimidine-substituted RNA aptamers that bind to gp120 of R5 strains of human immunodeficiency virus type 1 and thereby potently neutralize the infectivity of phylogenetically diverse R5 strains. Here we investigate the physical basis of their antiviral action. We show that both N-linked oligosaccharides and the variable loops V1/V2 and V3 are not required for binding of one aptamer, B40, to gp120. Using surface plasmon resonance binding analyses, we show that the aptamer binds to the CCR5-binding site on gp120 in a relatively CD4-independent manner, providing a mechanistic explanation for its neutralizing potency.  相似文献   

20.
The envelope protein of human immunodeficiency virus type 1 HIV-1 undergoes proteolytic cleavage in the Golgi complex to produce subunits designated gp120 and gp41, which remain noncovalently associated. While gp41 has a well-characterized oligomeric structure, the maintenance of gp41-independent gp120 intersubunit contacts remains a contentious issue. Using recombinant vaccinia virus to achieve high-level expression of gp120 in mammalian cells combined with gel filtration analysis, we were able to isolate a discrete oligomeric form of gp120. Oligomerization of gp120 occurred intracellularly between 30 and 120 min after synthesis. Analysis by sedimentation equilibrium unequivocally identified the oligomeric species as a dimer. In order to identify the domains involved in the intersubunit contact, we expressed a series of gp120 proteins lacking various domains and assessed the effects of mutation on oligomeric structure. Deletion of the V1 or V3 loops had little effect on the relative amounts of monomer and dimer in comparison to wild-type gp120. In contrast, deletion of either all or part of the V2 loop drastically reduced dimer formation, indicating that this domain is required for intersubunit contact formation. Consistent with this, the V2 loop of the dimer was less accessible than that of the monomer to a specific monoclonal antibody. Previous studies have shown that while the V2 loop is not an absolute requirement for viral entry, the absence of this domain reduces viral resistance to neutralization by monoclonal antibodies or sera. We propose that the quaternary structure of gp120 may contribute to resistance to neutralization by limiting the exposure of conserved epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号