首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here we used RNA interference and examined possible redundancy amongst Rho GTPases in their mitotic role. Chromosome misalignment is induced significantly in HeLa cells by Cdc42 depletion and not by depletion of either one or all of the other four Cdc42-like GTPases (TC10, TCL, Wrch1 or Wrch2), four Rac-like GTPases or three Rho-like GTPases. Notably, combined depletion of Cdc42 and all of the other four Cdc42-like GTPases significantly enhances chromosomal misalignment. These observations suggest that Cdc42 is the primary GTPase functioning during mitosis but that the other four Cdc42-like GTPases can also assume the mitotic role in its absence.  相似文献   

2.
Initial genetic studies in Drosophila suggested that several members of the Rho subfamily (RhoA, Rac1 and Cdc42) are involved in planar cell polarity (PCP) establishment. However, analyses of Rac1, Rac2 and Mtl loss-of-function (LOF) mutants have argued against their role in this process. Here, we investigate in detail the role of the Rho GTPases Mtl, Cdc42, Rac1 and Rac2 in PCP generation. These functional analyses were performed by overexpressing Mtl in eyes and wings, by performing genetic interaction assays and by using a combination of triple and quadruple mutant LOF clones. We found that Mtl overexpression caused PCP phenotypes and that it interacted genetically with other Rho GTPases, such as Rac1 and Cdc42 as well as with several PCP genes, such as stbm, pk and aos. However, Mtl was not found to interact with Rac2, RhoA and other members of the Fz/PCP pathway. Triple mutant clones of Rac1, Rac2 and Mtl were found to exhibit mild PCP defects which were enhanced by reduction of Cdc42 function with a hypomorphic Cdc42 allele. Taken together, these and previous results suggest that Rho GTPases may have partially overlapping functions during PCP generation. Alternatively, it is also possible that the mild PCP phenotypes observed could indicate that they are required at low levels in that process. However, since not all of them function upstream of a JNK cassette, we propose that they may act in at least two parallel pathways.  相似文献   

3.
We recently described that the tumor suppressor factor Scribble anchors the PIX exchange factor for Rac/Cdc42 and the ARF-GAP GIT proteins at the plasma membrane. Because it has been postulated that the GIT-PIX proteins dimerize and tightly self-assemble to form a high molecular weight complex, this nexus may be capable of linking together important signalling molecules to control cytosqueleton polymerization and membrane dynamics. To date, most studies that have tempted to unravel the function of these proteins have found their implication in a great variety of cellular functions (receptor recycling, endo-exocytosis, cell migration, synapse formation...) but have mostly neglected to consider the multimeric organization of this hub. There is no doubt that our comprehension of physiopathological disorders such as cancers will be improved when the nature of the complex pathways integrated by the GIT-PIX nodule will be understood.  相似文献   

4.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

5.
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were activated during infection of gastric epithelial cells with either the wild-type H. pylori or the mutant strain cagA. In contrast, no activation of Rho GTPases was observed when H. pylori mutant strains (virB7 and PAI) were used that lack functional type IV secretion apparatus. We demonstrated that H. pylori-induced activation of Rac1 and Cdc42 led to the activation of p21-activated kinase 1 (PAK1) mediating nuclear responses, whereas the mutant strain PAI had no effect on PAK1 activity. Activation of Rac1, Cdc42 and PAK1 represented a very early event in colonization of gastric epithelial cells by H. pylori. Rac1 and Cdc42 were recruited to the sites of bacterial attachment and are therefore probably involved in the regulation of local and overall cytoskeleton rearrangement in host cells. Finally, actin rearrangement and epithelial cell motility in H. pylori infection depended on the presence of a functional type IV secretion system encoded by the cag pathogenicity island (PAI).  相似文献   

6.
Non-malignant mammary epithelial cells (MECs) undergo acinar morphogenesis in three-dimensional Matrigel culture, a trait that is lost upon oncogenic transformation. Rho GTPases are thought to play important roles in regulating epithelial cell-cell junctions, but their contributions to acinar morphogenesis remain unclear. Here we report that the activity of Rho GTPases is down-regulated in non-malignant MECs in three-dimensional culture with particular suppression of Rac1 and Cdc42. Inducible expression of a constitutively active form of Vav2, a Rho GTPase guanine nucleotide exchange factor activated by receptor tyrosine kinases, in three-dimensional MEC culture activated Rac1 and Cdc42; Vav2 induction from early stages of culture impaired acinar morphogenesis, and induction in preformed acini disrupted the pre-established acinar architecture and led to cellular outgrowths. Knockdown studies demonstrated that Rac1 and Cdc42 mediate the constitutively active Vav2 phenotype, whereas in contrast, RhoA knockdown intensified the Vav2-induced disruption of acini, leading to more aggressive cell outgrowth and branching morphogenesis. These results indicate that RhoA plays an antagonistic role to Rac1/Cdc42 in the control of mammary epithelial acinar morphogenesis.  相似文献   

7.
Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD.  相似文献   

8.
In this study we show that expression of active Cdc42Hs and Rac1 GTPases, two Rho family members, leads to the reorganization of the vimentin intermediate filament (IF) network, showing a perinuclear collapse. Cdc42Hs displays a stronger effect than Rac1 as 90% versus 75% of GTPase-expressing cells show vimentin collapse. Similar vimentin IF modifications were observed when endogenous Cdc42Hs was activated by bradykinin treatment, endogenous Rac1 by platelet-derived growth factor/epidermal growth factor, or both endogenous proteins upon expression of active RhoG. This reorganization of the vimentin IF network is not associated with any significant increase in soluble vimentin. Using effector loop mutants of Cdc42Hs and Rac1, we show that the vimentin collapse is mostly independent of CRIB (Cdc42Hs or Rac-interacting binding)-mediated pathways such as JNK or PAK activation but is associated with actin reorganization. This does not result from F-actin depolymerization, because cytochalasin D treatment or Scar-WA expression have merely no effect on vimentin organization. Finally, we show that genistein treatment of Cdc42 and Rac1-expressing cells strongly reduces vimentin collapse, whereas staurosporin, wortmannin, LY-294002, R(p)-cAMP, or RII, the regulatory subunit of protein kinase A, remain ineffective. Moreover, we detected an increase in cellular tyrosine phosphorylation content after Cdc42Hs and Rac1 expression without modification of the vimentin phosphorylation status. These data indicate that Cdc42Hs and Rac1 GTPases control vimentin IF organization involving tyrosine phosphorylation events.  相似文献   

9.
Neutrophils contain a soluble guanine-nucleotidebinding protein, made up of two components with molecular masses of 23 and 26 kDa, that mediates stimulation of phospholipase C-beta2 (PLCbeta2). We have identified the two components of the stimulatory heterodimer by amino acid sequencing as a Rho GTPase and the Rho guanine nucleotide dissociation inhibitor LyGDI. Using recombinant Rho GTPases and LyGDI, we demonstrate that PLCbeta2 is stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-activated Cdc42HsxLyGDI, but not by RhoAxLyGDI. Stimulation of PLCbeta2, which was also observed for GTP[S]-activated recombinant Rac1, was independent of LyGDI, but required C-terminal processing of Cdc42Hs/Rac1. Cdc42Hs/Rac1 also stimulated PLCbeta2 in a system made up of purified recombinant proteins, suggesting that this function is mediated by direct protein-protein interaction. The Cdc42Hs mutants F37A and Y40C failed to stimulate PLCbeta2, indicating that the Cdc42Hs effector site is involved in this interaction. The results identify PLCbeta2 as a novel effector of the Rho GTPases Cdc42Hs and Rac1, and as the first mammalian effector directly regulated by both heterotrimeric and low-molecular-mass GTP-binding proteins.  相似文献   

10.
This work reports the isolation and molecular characterization of CDC42 and RAC1 cDNAs from the ectomycorrhiza forming filamentous homobasidiomycete Suillus bovinus. Previously, no RAC gene was described from filamentous fungi and no CDC42 gene was described from homobasidiomycetes. Southern hybridization with SbCDC42 and SbRAC1 cDNAs indicated that the S. bovinus genome contains only one CDC42 and one RAC1 gene. The predicted amino acid sequence of SbRaclp is 77% identical with the Rac1B protein of chick, whereas SbCdc42p is most identical with Schizosaccharomyces pombe Cdc42p, showing 88% identity. In the predicted amino acid sequences of SbRaclp and SbCdc42p, the five guanine nucleotide binding regions, switch I and II, and the effector domain are highly identical to those known in other small GTPases. These domain structures suggest that in S. bovinus, SbRac1p and SbCdc42p function as molecular switches regulating the organization of actin cytoskeleton, similar to yeasts and mammals. SbRAC1 and SbCDC42 were expressed in vegetative and ectomycorrhizal hyphae, and SbCdc42p was detected in ectomycorrhiza-forming hyphae if growth and differentiation of the symbiotic hyphae took place. Cdc42p and actin were localized at the tips of S. bovinus vegetative hyphae. Similar to yeast, in filamentous fungi Cdc42p may be necessary to maintain the actin cytoskeleton at hyphal tips, making the polarized growth of the hyphae possible. In developing ectomycorrhiza, Cdc42p and actin were visualized in association with plasma membrane in swollen cells typical to the symbiotic hyphae. The role of Cdc42p and actin in regulation of the growth pattern and morphogenesis of ectomycorrhizal hyphae is discussed.  相似文献   

11.
Cell adhesion to extracellular matrix is an important physiological stimulus for organization of the actin-based cytoskeleton. Adhesion to the matrix glycoprotein thrombospondin-1 (TSP-1) triggers the sustained formation of F-actin microspikes that contain the actin-bundling protein fascin. These structures are also implicated in cell migration, which may be an important function of TSP-1 in tissue remodelling and wound repair. To further understand the function of fascin microspikes, we examined whether their assembly is regulated by Rho family GTPases. We report that expression of constitutively active mutants of Rac or Cdc42 triggered localization of fascin to lamellipodia, filopodia, and cell edges in fibroblasts or myoblasts. Biochemical assays demonstrated prolonged activation of Rac and Cdc42 in C2C12 cells adherent to TSP-1 and activation of the downstream kinase p21-activated kinase (PAK). Expression of dominant-negative Rac or Cdc42 in C2C12 myoblasts blocked spreading and formation of fascin spikes on TSP-1. Spreading and spike assembly were also blocked by pharmacological inhibition of F-actin turnover. Shear-loading of monospecific anti-fascin immunoglobulins, which block the binding of fascin to actin into cytoplasm, strongly inhibited spreading, actin cytoskeletal organization and migration on TSP-1 and also affected the motility of cells on fibronectin. We conclude that fascin is a critical component downstream of Rac and Cdc42 that is needed for actin cytoskeletal organization and cell migration responses to thrombospondin-1.  相似文献   

12.
Hypoxia-inducible factor 1 (HIF-1) is a key regulator of tumor development. Recently, the tumor microenvironment, with the presence of tumor-associated macrophages (TAMs), has gained considerable interest. The mechanisms of macrophage/TAM migration as well as the role of HIF-1 in macrophages for tumor progression are still under debate. We present evidence that under normoxic conditions, nitric oxide (NO) promotes macrophage migration. The response was impaired in macrophages from leukocyte conditional HIF-1α−/− mice. NO production and cell migration in response to cytokines were attenuated in macrophages from iNOS−/− mice, suggesting that iNOS-derived NO transmits cytokine signaling toward cell migration. We further identified the small GTPases Cdc42 and Rac1 as effectors of the NO–HIF axis to drive macrophage migration by modulating the actin cytoskeleton. Our observations strengthen the role of HIF-1 in macrophages as a target of NO in facilitating functional responses such as migration.  相似文献   

13.
Dbl is a representative prototype of a growing family of oncogene products that contain the Dbl homology/pleckstrin homology elements in their primary structures and are associated with a variety of neoplastic pathologies. Members of the Dbl family have been shown to function as physiological activators (guanine nucleotide exchange factors) of the Rho-like small GTPases. Although the expression of GTPase-defective versions of Rho proteins has been shown to induce a transformed phenotype under different conditions, their transformation capacity has been typically weak and incomplete relative to that exhibited by dbl-like oncogenes. Moreover, in some cases (e.g. NIH3T3 fibroblasts), expression of GTPase-defective Cdc42 results in growth inhibition. Thus, in attempting to reconstitute dbl-induced transformation of NIH3T3 fibroblasts, we have generated spontaneously activated ("fast-cycling") mutants of Cdc42, Rac1, and RhoA that mimic the functional effects of activation by the Dbl oncoprotein. When stably expressed in NIH3T3 cells, all three mutants caused the loss of serum dependence and showed increased saturation density. Furthermore, all three stable cell lines were tumorigenic when injected into nude mice. Our data demonstrate that all three Dbl targets need to be activated to promote the full complement of Dbl effects. More importantly, activation of each of these GTP-binding proteins contributes to a different and distinct facet of cellular transformation.  相似文献   

14.
Host cell invasion of the food-borne pathogen Campylobacter jejuni is one of the primary reasons of tissue damage in humans but molecular mechanisms are widely unclear. Here, we show that C. jejuni triggers membrane ruffling in the eukaryotic cell followed by invasion in a very specific manner first with its tip followed by the flagellar end. To pinpoint important signalling events involved in the C. jejuni invasion process, we examined the role of small Rho family GTPases. Using specific GTPase-modifying toxins, inhibitors and GTPase expression constructs we show that Rac1 and Cdc42, but not RhoA, are involved in C. jejuni invasion. In agreement with these observations, we found that internalization of C. jejuni is accompanied by a time-dependent activation of both Rac1 and Cdc42. Finally, we show that the activation of these GTPases involves different host cell kinases and the bacterial fibronectin-binding protein CadF. Thus, CadF is a bifunctional protein which triggers bacterial binding to host cells as well as signalling leading to GTPase activation. Collectively, our results suggest that C. jejuni invade host target cells by a unique mechanism and the activation of the Rho GTPase members Rac1 and Cdc42 plays a crucial role in this entry process.  相似文献   

15.
16.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

17.
18.
Kim SK 《Nature cell biology》2000,2(8):E143-E145
Three recent papers have reported the surprising finding that Cdc42 and Rac1, both of which are known to be involved in maintaining apico-basolateral polarity of epithelial cells, can each bind to a protein complex containing Par6, Par3 and PKCzeta. These latter three proteins have known functions in the polarization of mother cells before asymmetric cell division in Caenorhabditis elegans. These latest results indicate a possible link between the mechanisms used to maintain cell polarity and to set up asymmetric cell divisions.  相似文献   

19.
Cdc42/Rho GTPases are universally important regulators of cellular morphogenesis. Whereas their functions are well characterized in budding yeast, they are only beginning to be understood in filamentous fungi. The recent systematic analysis of Cdc42, Rac1 and Rho function in Aspergillus niger provides the first global perspective on their respective roles in hyphal morphogenesis. Surprisingly, the partitioning of these roles between Cdc42 and Rac1 seems to vary even among related fungi. These observations highlight the variable use of a common signalling module in filamentous fungi.  相似文献   

20.
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, have been used successfully in the treatment of hypercholesterolemia for more than a decade. Statins also exhibit overall clinical benefits on cardiovascular diseases independent of their effects on lowering serum cholesterol levels. These beneficial effects of statin therapy are believed to be due, at least in part, to the anti-inflammatory and immunomodulatory roles of statins. Statin treatment reduces the levels of inflammatory markers, decreases the activation and recruitment of immune cells, and delays the progression of atherosclerosis, a chronic inflammatory disease. However, little is known about the direct impact of statins on immune cells, particularly on macrophages. We report that lovastatin, a member of the statin family, effectively induces apoptosis in macrophages. Further investigation of the molecular mechanism has revealed that Rac1 and Cdc42, the small GTPase family members, may play an important role in lovastatin-induced macrophage apoptosis. Moreover, the activation of the JNK pathway may contribute to this event. Our findings provide a better understanding of the molecular basis underlying the anti-inflammatory clinical benefits of statin therapy in cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号