首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within estuarine and coastal ecosystems globally, extensive habitat degradation and loss threaten critical ecosystem functions and necessitate widescale restoration efforts. There is abundant evidence that ecological processes and species interactions can vary with habitat characteristics, which has important implications for the design and implementation of restoration efforts aimed at enhancing specific ecosystem functions and services. We conducted an experiment examining how habitat characteristics (presence; edge vs. interior) influence the communities of resident fish and mobile invertebrates on restored oyster (Crassostrea virginica) reefs. Similar to previous studies, we found that restored reefs altered community composition and augmented total abundance and biomass relative to unstructured sand habitat. Community composition and biomass also differed between the edge and interior of individual reefs as a result of species-specific patterns over small spatial scales. These patterns were only weakly linked to oyster density, suggesting that other factors that vary between edge and interior (e.g. predator access or species interactions) are likely more important for community structure on oyster reefs. Fine-scale information on resident species' use of oyster reefs will help facilitate restoration by allowing decision makers to optimize the amount of edge versus interior habitat. To improve the prediction of faunal use and benefits from habitat restoration, we recommend investigations into the mechanisms shaping edge and interior preferences on oyster reefs.  相似文献   

2.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited.  相似文献   

6.
The functional response of predators to prey density variations has previously been investigated in order to understand predation patterns. However, the consequences of functional response on parasite transmission remain largely unexplored. The rodents Microtus arvalis and Arvicola terrestris are the main prey of the red fox Vulpes vulpes in eastern France. These species are intermediate and definitive hosts of the cestode Echinococcus multilocularis. We explored the dietary and contamination responses of the red fox to variations in prey density. The dietary response differed between the two prey species: no response for M. arvalis and a type III-like (sigmoidal) response for A. terrestris that shows possible interference with M. arvalis. The fox contamination response followed a type II shape (asymptotic) for both species. We conclude that fox predation is species specific and E. multilocularis transmission is likely to be regulated by a complex combination of predation and immunologic factors. These results should provide a better understanding of the biological and ecological mechanisms involved in the transmission dynamics of trophically transmitted parasites when multiple hosts are involved. The relevance of the models of parasite transmission should be enhanced if non-linear patterns are taken into account.  相似文献   

7.
8.
Perturbations to the density of a species can be propagated to distant members of a food web via shifts in the density or the traits (i.e. behavior) of intermediary species. Predators with differing foraging modes may have different effects on prey behavior, and these effects may be transmitted differently through food webs. Here we test the hypothesis that shifts in the type of predator present in a food web indirectly affect the prey's resource independent of changes in the density of prey. We assessed the importance of predator identity in mediating the grazing effects of the freshwater snail Physa integra on its periphyton resources using field and mesocosm studies. Field observations showed that Physa used covered habitats more in ponds containing fish than in ponds containing crayfish or no predators at all. A field experiment confirmed that snail behavior depended on predator identity. Physa placed near caged pumpkinseed sunfish (Lepomis gibbosus) selected covered habitats, but Physa placed near caged crayfish (Orconectes rusticus) moved to the surface of the water. The effects of predator identity on periphtyon were then examined in a mesocosm experiment, using caged predators. Habitat use of Physa was similar to their habitat use in the field experiment. In the presence of caged sunfish, periphyton standing crop in covered habitats was reduced to 34% of the standing crop in the presence of crayfish. In contrast, periphyton in near-surface habitats was 110% higher in the presence of fish than in the presence of crayfish. Thus, the effects of predator identity on Physa behavior cascaded through the food web to affect the abundance and spatial distribution of periphyton.  相似文献   

9.
Predation is a dominant structuring force in ecosystems, but its effects are almost always measured in the ecosystem of the predator. However, the effects of predators can potentially extend across ecosystem boundaries during ontogenetic niche shifts in prey. We compared the effects of fish predation on benthic versus emerging aquatic insects, and hypothesized that the relative effects of fish on these two stages of prey are mediated by fish foraging strategy (benthic versus water‐column feeders). Benthic‐feeding smallmouth buffalo reduced benthic insect biomass in the freshwater ecosystem by 89%, and reduced insect emergence to the terrestrial ecosystem by 65%. In contrast, water‐column feeding sunfish had no effect on benthic biomass in the freshwater ecosystem, but reduced emergence to the terrestrial ecosystem by 44% relative to the fishless control. When smallmouth and sunfish were combined in a substitutive design that kept total fish density the same as the single species treatments, their effects on benthic insects (50% reduction) were weaker than expected based on predictions from the single species treatments. In contrast, their combined effects on emergence (46% reduction) were additive. Tetragnathid spider densities increased during peak emergence, but did not respond to changes in emergence among treatments. These results demonstrate that the effects of fish on prey flux to the terrestrial ecosystem are not the same as their effects on benthic prey biomass in the aquatic ecosystem, and that this difference is likely mediated by foraging strategy.  相似文献   

10.
Guidetti P 《Oecologia》2007,154(3):513-520
Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.  相似文献   

11.
Many predator–prey systems are found in environments with a predominantly unidirectional flow such as streams and rivers. Alterations of natural flow regimes (e.g., due to human management or global warming) put biological populations at risk. The aim of this paper is to devise a simple method that links flow speeds (currents) with population retention (persistence) and wash-out (extinction). We consider systems of prey and specialist, as well as generalist, predators, for which we distinguish the following flow speed scenarios: (a) coexistence, (b) persistence of prey only or (c) predators only (provided they are generalists), and (d) extinction of both populations. The method is based on a reaction–advection–diffusion model and traveling wave speed approximations. We show that this approach matches well spread rates observed in numerical simulations. The results from this paper can provide a useful tool in the assessment of instream flow needs, estimating the flow speed necessary for preserving riverine populations.  相似文献   

12.
13.
Andrew M. Turner 《Oikos》2004,104(3):561-569
A number of studies show that predators can depress prey growth rates by inducing reductions in foraging activity, but the size of this non-lethal effect is quite variable. Here I investigate how prey density and resource productivity may alter the extent to which predators depress the growth rates of their prey. Theory predicts that when resources are overgrazed, an increase in predation risk will have little net effect on individual food intake because the decline in foraging effort will be offset by an increase in resource level. Thus, the non-lethal effects of predators on prey growth rates should depend upon prey density and resource productivity in a predictable manner, with the growth penalty imposed by predators being strongest when resources are undergrazed and weakest when resources are overgrazed. I tested this hypothesis by manipulating predation risk, prey density, and nutrient additions in a mesocosm experiment with the pulmonate snail Helisoma trivolvis . Refuge use by snails was 45% higher in the presence of caged crayfish than in their absence. Snail growth rates were reduced, on average, by 24% in the presence of caged crayfish. However, the magnitude of the growth penalty exacted by crayfish depended on snail density and nutrient additions. When snails were stocked at high density and nutrient additions were low, growth suppression was just 2.6%. At the other extreme, when snails were at low density and nutrient additions were high, growth suppression was 44.6%. Thus, the non-lethal effects of predators on prey growth depend on environmental context, illustrating an important link between individual traits and system-level properties.  相似文献   

14.
The abundant herbivorous mud-snail Hydrobia ulvae is an ecosystem engineer in soft-bottom intertidal habitats due to its grazing and bioturbation activity. However, mud snails are commonly infected by trematodes that reduce their overall activity, which in turn may affect their impact on the surrounding benthic community. To test this hypothesis, we performed field experiments manipulating both the abundance of uninfected snails (0, 7500 and 15.000 ind. m- 2) and the level of snail parasitism (0, 33 and 100% trematode prevalence) on a Danish mud-flat. The results showed that increasing snail abundance and parasitism generally had opposite effects on the community of microphytobenthos and zoobenthos. Increasing snail density increased the chlorophyll-a concentration in the substrate (enhancement), whereas increasing parasitism decreased it. In accordance, the benthic primary producers were generally less nutrient limited at high snail density and mostly so at high levels of snail parasitism. Moreover, epipsammic diatoms were favoured over epipelic diatoms at increasing snail density, whereas the opposite was evident at increasing snail parasitism. At the community level, increasing snail density increased evenness among epipelic diatoms, whereas increasing snail parasitism decreased evenness and species diversity. Probably through the action of trophic cascades and varying levels of disturbance, the zoobenthic community was influenced by experimental treatments as well. The indirect effects of snail parasitism influenced significantly the abundance of more faunal species (seven) than did snail density (two). At the community level, increasing snail density decreased evenness and lowest species richness coincided with intermediate snail density. In contrast, increasing snail parasitism resulted in increasing evenness and peaking species richness at intermediate level of parasitism. Together, the results show that parasites solely through their impact on the behaviour of a single community member can be significant indirect determinants of community organisation and function.  相似文献   

15.
Synopsis Research on eleven artificial reefs in Puget Sound, Washington examined the relative importance of reef-produced prey items to recreationally important reef fish species assemblages. The colonization of potential prey items, and fish species assemblages to ten artificial reefs were examined for the reefs first two to five years, and observations were conducted on an eleventh reef during its forty-ninth productive year. Fish species became more abundant, or were seen more frequently on reef habitats whose substrates had successionally developed from barnalces to algal mats. Fish species most affected by this successional change foraged heavily on organisms which were associated with reef algae. Starfish and nudibranchs. who preyed on the barnacles, were identified as the ‘keystone’ predators of these subtidal reef habitats.  相似文献   

16.
1. Generalist predators are important contributors to reliable conservation biological control. Indirect interactions between prey species that share a common generalist predator can influence both community dynamics and the efficacy of biological control. 2. Laboratory cage experiments investigated the impact of the combined consumptive and non-consumptive effects of predation by adult Hippodamia convergens as a shared predator on the population growth and relative abundance of Acyrthosiphon pisum and Aphis gossypii as prey species. Predation pressure and prey density were varied. 3. At low predation pressure the indirect interaction between aphid species was asymmetrical with a proportionally greater negative impact of predation on A. gossypii than on A. pisum. At intermediate predation pressure, the indirect interaction became symmetrical. At high predation pressure and higher levels of prey density, it was asymmetrical with greater negative impact on A. pisum, often driven to local extinction while A. gossypii populations persisted. 4. A linear mixed-effects model including early population growth of both aphid species and predation pressure explained 96% and 92% of the variation in the population growth of A. pisum and A. gossypii, respectively, over an 8-day period. The overall effect of shared predation on the indirect interaction between the two aphid species is best described as apparent commensalism, where A. pisum benefited from early population growth of A. gossypii, while A. gossypii was unaffected by early population growth of A. pisum. Considering these indirect interactions is important for conservation biological control efforts to be successful.  相似文献   

17.
Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and "predator-free space" to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of "predator-free space" was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require "predator-free space" measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of "predator-free space" are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.  相似文献   

18.
Tuckett  C. A.  de Bettignies  T.  Fromont  J.  Wernberg  T. 《Coral reefs (Online)》2017,36(3):947-956

Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010–2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  相似文献   

19.
Assessing the implications of species invasion for native communities requires determining whether effects of invaders are novel, or are redundant with effects of species that are already present. Using a pair of field experiments conducted over two successive years, we examined factors that influence community impacts of a recent predatory crab invader (Hemigrapsus sanguineus) and a previously established invasive crab (Carcinus maenas) on New England coasts. We demonstrate that effects of these species differ temporally with changes in the ambient prey community, and are influenced by density differences between the two species and by different strengths and types of indirect effects that each elicits. Our study highlights the importance of including bottom-up processes (i.e., prey recruitment) when examining the redundancy of consumers.  相似文献   

20.
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号