首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
遗传基因组学(Genetical genomics)的研究进展   总被引:1,自引:0,他引:1  
遗传基因组学(geneticalgenomics)是将微阵列技术和数量性状座位(QTL)分析结合起来,全基因组水平上定位基因表达的QTL(eQTL).它为研究复杂性状的分子机理和调控网络提供全新的手段.遗传基因组这个概念和研究策略在2001年由Janson和Nap首先提出,到目前为止,遗传基因组学已应用于酵母、老鼠、人以及玉米等植物.研究结果表明:基因表达水平的差异是可遗传的复杂性状;eQTL可以分为顺式作用eQTL和反式作用eQTL,顺式作用eQTL就是某个基因的eQTL定位到该基因所在的基因组区域,表明可能是该基因本身的差别引起mRNA水平的差别,反式作用就是eQTL定位到其他基因组区域,表明其他基因的差别控制该基因mRNA水平的差异.将eQTL结果、基因功能注解以及多种统计分析方法相结合,不仅能更准确地鉴别控制复杂性状及其相关基因表达的候选基因,而且能构建相应的基因调控网络.  相似文献   

2.
3.
4.
To clone or not to clone plant QTLs: present and future challenges   总被引:15,自引:0,他引:15  
Recent technical advancements and refinement of analytical methods have enabled the loci (quantitative trait loci, QTLs) responsible for the genetic control of quantitative traits to be dissected molecularly. To date, most plant QTLs have been cloned using a positional cloning approach following identification in experimental crosses. In some cases, an association between sequence variation at a candidate gene and a phenotype has been established by analysing existing genetic accessions. These strategies can be refined using appropriate genetic materials and the latest developments in genomics platforms. We foresee that although QTL analysis and cloning addressing naturally occurring genetic variation should shed light on mechanisms of plant adaptation, a greater emphasis on approaches relying on mutagenesis and candidate gene validation is likely to accelerate the pace of discovering the genes underlying QTLs.  相似文献   

5.
Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Finally, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility  相似文献   

6.
7.
8.
9.
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.  相似文献   

10.
Stalk lodging in maize causes annual yield losses between 5 and 20% worldwide. Many studies have indicated that maize stalk strength significantly negatively correlates with lodging observed in the field. Rind penetrometer resistance (RPR) measurements can be used to effectively evaluate maize stalk strength, but little is known about the genetic basis of this parameter. The objective of this study was to explore a genetic model and detect quantitative trait loci (QTL) of RPR and determine relationships between RPR and other stalk traits, especially cell wall chemical components. RPR is quantitative trait in nature, and both additive and non-additive effects may be important to consider for the improvement of RPR. Nine additive-effect QTLs covering nine chromosomes, except chromosome 5, and one pair of epistatic QTLs were detected for RPR. CeSA11 involved in cellulose synthesis and colorless2 involved in lignin synthesis were identified as possible candidate genes for RPR. Internode diameter (InD), fresh weight of internode (FreW), dry weight of internode (DryW), fresh weight and dry weight as well as cell wall components per unit volume significantly positively correlated with RPR. The internode water content (InW) significantly negatively correlated with RPR. Notably, these traits significantly correlated with RPR, and the QTLs of these traits co-localized with those of RPR. The corresponding results obtained from correlation analysis and QTL mapping suggested the presence of pleitropism or linkage between genes and indicated that these different approaches may be used for cross authentication of relationships between different traits.  相似文献   

11.
12.
13.
The identification of genetic variants responsible for behavioral variation is an enduring goal in biology, with wide-scale ramifications, ranging from medical research to evolutionary theory on personality syndromes. Here, we use for the first time a large-scale genetical genomics analysis in the brains of chickens to identify genes affecting anxiety as measured by an open field test. We combine quantitative trait locus (QTL) analysis in 572 individuals and expression QTL (eQTL) analysis in 129 individuals from an advanced intercross between domestic chickens and Red Junglefowl. We identify 10 putative quantitative trait genes affecting anxiety behavior. These genes were tested for an association in the mouse Heterogeneous Stock anxiety (open field) data set and human GWAS data sets for bipolar disorder, major depressive disorder, and schizophrenia. Although comparisons between species are complex, associations were observed for four of the candidate genes in mice and three of the candidate genes in humans. Using a multimodel approach we have therefore identified a number of putative quantitative trait genes affecting anxiety behavior, principally in chickens but also with some potentially translational effects as well. This study demonstrates that chickens are an excellent model organism for the genetic dissection of behavior.  相似文献   

14.
15.
Understanding the genetic architecture of quantitative traits begins with identifying the genes regulating these traits, mapping the subset of genetically varying quantitative trait loci (QTLs) in natural populations, and pinpointing the molecular polymorphisms defining QTL alleles. Studies in Drosophila have revealed large numbers of pleiotropic genes that interact epistatically to regulate quantitative traits, and large numbers of QTLs with sex-, environment- and genotype-specific effects. Multiple molecular polymorphisms in regulatory regions of candidate genes are often associated with variation for complex traits. These observations offer valuable lessons for understanding the genetic basis of variation for complex traits in other organisms, including humans.  相似文献   

16.
17.
18.
Chen X  Guo W  Liu B  Zhang Y  Song X  Cheng Y  Zhang L  Zhang T 《PloS one》2012,7(1):e30056
Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) and QTL-by-environment interactions by multi-QTL joint analysis. Further analysis of fiber growth and gene expression between TM-1 and Hai7124 showed greater differences at 10 and 25 days post-anthesis (DPA). In this two period important for fiber performances, we integrated genome-wide expression profiling with linkage analysis using the same genetic materials and identified in total 916 expression QTL (eQTL) significantly (P<0.05) affecting the expression of 394 differential genes. Many positional cis-/trans-acting eQTL and eQTL hotspots were detected across the genome. By comparative mapping of eQTL and fiber QTL, a dataset of candidate genes affecting fiber qualities was generated. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism for G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulated expression of abscisic acid (ABA) and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities.  相似文献   

19.
The morphology of rice (Oryza sativa L.) panicles is an important determinant of grain yield, and elucidation of the genetic control of panicle structure is very important for fulfilling the demand for high yield in breeding programs. In a quantitative trait locus (QTL) study using 82 backcross inbred lines (BILs) derived from Koshihikari and Habataki, 68 QTLs for 25 panicle morphological traits were identified. Gene expression profiling from inflorescence meristems of BILs was obtained. A combination of phenotypic QTL (pQTL) and expression QTL (eQTL) analysis revealed co‐localization between pQTLs and eQTLs, consistent with significant correlations between phenotypic traits and gene expression levels. By combining pQTL and eQTL data, two genes were identified as controlling panicle structure: OsMADS18 modulates the average length of the primary rachis and OsFTL1 has pleiotropic effects on the total number of secondary rachides, number of grains per panicle, plant height and the length of flag leaves. Phenotypes were confirmed in RNA interference knocked‐down plants and overexpressor lines. The combination of pQTL and eQTL analysis could facilitate identification of genes involved in rice panicle formation.  相似文献   

20.
Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn’s disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号