首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer.

Results

We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein.

Conclusions

Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.  相似文献   

3.
4.
Several members of the let-7 microRNA family are downregulated in ovarian and other cancers. They are thought to act as tumor suppressors by lowering growth-promoting and anti-apoptotic proteins. In order to measure cellular let-7 levels systematically, we have developed a highly sensitive let-7 reporter assay system based on the expression of a chimeric mRNA that contains the luciferase coding region and a 3′-untranslated region (UTR) bearing two let-7-binding sites. In cells expressing the reporter construct, termed pmirGLO-let7, luciferase activity was high when let-7 was absent, while luciferase activity was low when let-7 levels were elevated. The ovarian cancer cell lines BG-1 and UCI-101 were transfected with the let-7 reporter and surveyed with a library of kinase inhibitors in order to identify pathways affecting let-7 activity. Among the inhibitors causing changes in endogenous let-7 abundance, the lowering of glycogen synthase kinase 3 (GSK-3)β function specifically increased let-7 levels and lowered luciferase activity. Similarly, silencing GSK-3β increased both mature and primary-let-7 levels in BG-1 cells, and decreased BG-1 cell survival. Further studies identified p53 as a downstream effector of the GSK-3β-mediated repression of let-7 biosynthesis. Our studies highlight GSK-3β as a novel therapeutic target in ovarian tumorigenesis.  相似文献   

5.
The let-7 family contains 12 members, which share identical seed regions, suggesting that they may target the same mRNAs. It is essential to develop a means that can regulate the functions of all members. Using a DNA synthesis technique, we have generated an anti-let-7 sponge aiming to modulate the function of all members. We found that products of the anti-let-7 construct could bind and inactivate all members of the let-7 family, producing decoy and decay effects. To test the role of the anti-let-7 sponge, we stably expressed the anti-let-7 construct in two types of cells, the breast carcinoma cells MT-1 and the oldest and most commonly used human cervical cancer cell line, HeLa cells. We found that expression of anti-let-7 increased cell survival, invasion and adhesion, which corroborate with known functions of let-7 family members. We further identified a novel target site across all species of the let-7 family in hyaluronan synthase 2 (HAS2). HAS2 overexpression produced similar effects as the anti-let-7 sponge. Silencing HAS2 expression by siRNAs produced opposite effects to anti-let-7 on cell survival and invasion. The ability of anti-let-7 to regulate multiple members of the let-7 family allows us to observe their multiple functions using a single reagent. This approach can be applied to other family members with conserved sequences.  相似文献   

6.
The let-7 family contains 12 members, which share identical seed regions, suggesting that they may target the same mRNAs. It is essential to develop a means that can regulate the functions of all members. Using a DNA synthesis technique, we have generated an anti-let-7 sponge aiming to modulate the function of all members. We found that products of the anti-let-7 construct could bind and inactivate all members of the let-7 family, producing decoy and decay effects. To test the role of the anti-let-7 sponge, we stably expressed the anti-let-7 construct in two types of cells, the breast carcinoma cells MT-1 and the oldest and most commonly used human cervical cancer cell line, HeLa cells. We found that expression of anti-let-7 increased cell survival, invasion and adhesion, which corroborate with known functions of let-7 family members. We further identified a novel target site across all species of the let-7 family in hyaluronan synthase 2 (HAS2). HAS2 overexpression produced similar effects as the anti-let-7 sponge. Silencing HAS2 expression by siRNAs produced opposite effects to anti-let-7 on cell survival and invasion. The ability of anti-let-7 to regulate multiple members of the let-7 family allows us to observe their multiple functions using a single reagent. This approach can be applied to other family members with conserved sequences.  相似文献   

7.
8.
MicroRNAs (miRNAs) play an important regulatory role in breast tumorigenesis. Previously, we found that let-7 miRNAs were downregulated significantly in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. In this study, we further found that endogenous levels of let-7b and let-7i miRNAs are inversely correlated with levels of estrogen receptor (ER)-a36, a new variant of ER-α66, in the FFPE tissue set. Bioinformatic analysis suggested that ER-α36 may be another target of let-7 miRNAs. To test this hypothesis, cotransfection of let-7 mimics or inhibitors together with full-length or a fragment of ER-α36 3'UTR luciferase construct was performed, and we found that let-7b and let-7i mimics suppressed the activity of reporter gene significantly, which was enhanced remarkably by let-7b and let-7i inhibitors. Both mRNA and protein expression of ER-α36 were inhibited by let-7 mimics and enhanced by let-7 inhibitors. Furthermore, ER-α36 mediated nongenomic MAPK and Akt pathways were weakened by let-7b and let-7i mimics in triple negative breast cancer cell line MDA-MB-231. The reverse correlation between let-7 miRNAs and ER-α36 also exists in Tamoxifen (Tam)-resistant MCF7 cell line. Transfection of let-7 mimics to Tam-resistant MCF7 cells downregulated ER-α36 expression and enhanced the sensitivity of MCF7 cells to Tam in estrogen-free medium, which could be restored by overexpression of ER-α36 constructs without 3'UTR. Our results suggested a novel regulatory mechanism of let-7 miRNAs on ER-α36 mediated nongenomic estrogen signal pathways and Tam resistance.  相似文献   

9.
10.
Liu XR  Tian WH  Dong XY  Wu XZ  Lv JX  Wu XB 《病毒学报》2011,27(6):533-541
研究在HeLaS3细胞中过表达Lin28a/Lin28b对let-7家族miRNA表达水平和活性的影响。首先,构建Lin28a和Lin28b的表达载体pAAV2neo-Lin28a和pAAV2neo-Lin28b,分别转染HeLaS3细胞并筛选获得Lin28a和Lin28b的稳定表达细胞株HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b。然后,以pAAV2neo-Gluc-(Fluc)为基本骨架,构建并获得检测let-7家族miRNA活性的8种质粒型载体,并包装为相应的重组腺相关病毒(Recombinant adeno-associated virus,rAAV),作为检测miRNA靶序列介导的转录后抑制活性的传感器,命名为Asensor。在此基础上,以HeLaS3细胞为对照,用Western blot检测HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b细胞中Lin28a和Lin28b表达水平,用QRT-PCR测定let-7家族各成员表达水平,用Asensor检测let-7家族各成员活性。Western blot结果显示,HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b均能有效地表达Lin28a和Lin28b蛋白;QRT-PCR检测结果显示,相比于HeLaS3细胞,HeLaS3/pAAV2neo-Lin28a细胞中let-7家族各成员表达水平都下降(除let-7e外),但不同成员下降幅度存在差异;Asensor检测结果显示,let-7家族所有成员活性水平都下降,但不同成员下降幅度也存在差异,且同一成员活性水平与表达水平及其下降趋势也不一致。相比于HeLaS3细胞,HeLaS3/pAAV2neo-Lin28b细胞中let-7家族成员的表达和活性水平均明显下降,但表达水平的下降幅度比HeLaS3/pAAV2neo-Lin28a细胞大,而活性的下降幅度却与之相近。本研究建立了一种检测和比较miRNA靶序列介导的转录后抑制活性的方法,首次研究了过表达Lin28a和Lin28b对细胞中的let-7家族miRNA活性影响,并发现Lin28a和Lin28b对let-7家族miRNA表达水平的影响和对其相应活性的影响不一致性,说明在检测miRNA表达水平的同时检测miRNA活性能更全面揭示miRNA的调节功能,为进一步研究let-7家族的调控机制奠定了基础。  相似文献   

11.
The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3'UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3'-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.  相似文献   

12.
13.
Cytogenetically normal acute myeloid leukemia (CN-AML) is the largest and most heterogeneous AML subgroup. It lacks sensitive and specific biomarkers. Emerging evidences have suggested that microRNAs are involved in the pathogenesis of various leukemias. This paper evaluated the association between microRNA expression and prognostic outcome for CN-AML, based on the RNA/microRNA sequencing data of CN-AML patients. High let-7a-2-3p expression and low miR-188-5p expression were identified to be significantly associated with longer overall survival (OS) and event free survival (EFS) for CN-AML, independently or in a combined way. Their prognostic values were further confirmed in European Leukemia Net (ELN) genetic categories. Also, in multivariable analysis with other known risk factors, high let-7a-2-3p and low miR-188-5p expression remained to be associated with longer OS and EFS. In addition, the prognostic value of these two microRNAs was confirmed in patients who received hematopoietic stem cell transplantation (HSCT). To gain more biological insights of the underlying mechanisms, we derived the genome-wide differential gene/microRNA signatures associated with the expression of let-7a-2-3p and miR-188-5p. Several common microRNA signatures indicating favorable outcome in previous studies were up-regulated in both high let-7a-2-3p expressers and low miR-188-5p expressers, including miR-135a, miR-335 and miR-125b and all members of miR-181 family. Additionally, common up-regulated genes included FOSB, IGJ, SNORD50A and ZNF502, and FOSB was a known favorable signature in AML. These common signatures further confirmed the underlying common mechanisms for these two microRNAs value as favorable prognostic biomarkers. We concluded that high let-7a-2-3p and low miR-188-5p expression could be potentially used as favorably prognostic biomarkers independently or in a combined way in CN-AML patients, whether they received HSCT or not.  相似文献   

14.
The RNA-binding protein Lin28 is known to promote malignancy by inhibiting the biogenesis of let-7, which functions as a tumor suppressor. However, the role of the Lin28/let-7 axis in the epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer has not been clearly expatiated. In our previous study, we demonstrated that let-7 regulates self-renewal and tumorigenicity of breast cancer stem cells. In the present study, we demonstrated that Lin28 was highly expressed in mesenchymal (M) type cells (MDA-MB-231 and SK-3rd), but it was barely detectable in epithelial (E) type cells (MCF-7 and BT-474). Lin28 remarkably induced the EMT, increased a higher mammosphere formation rate and ALDH activity and subsequently promoted colony formation, as well as adhesion and migration in breast cancer cells. Furthermore, we demonstrated that Lin28 induced EMT in breast cancer cells via downregulation of let-7a. Strikingly, Lin28 overexpression was found in breast cancers that had undergone metastasis and was strongly predictive of poor prognoses in breast cancers. Given that Lin28 induced the EMT via let-7a and promoted breast cancer metastasis, Lin28 may be a therapeutic target for the eradication of breast cancer metastasis.  相似文献   

15.
Liu WM  Pang RT  Cheong AW  Ng EH  Lao K  Lee KF  Yeung WS 《PloS one》2012,7(5):e37039
MicroRNAs interact with multiple mRNAs resulting in their degradation and/or translational repression. This report used the delayed implantation model to determine the role of miRNAs in blastocysts. Dormant blastocysts in delayed implanting mice were activated by estradiol. Differential expression of 45 out of 238 miRNAs examined was found between the dormant and the activated blastocysts. Five of the nine members of the microRNA lethal-7 (let-7) family were down-regulated after activation. Human blastocysts also had a low expression of let-7 family. Forced-expression of a family member, let-7a in mouse blastocysts decreased the number of implantation sites (let-7a: 1.1±0.4; control: 3.8±0.4) in vivo, and reduced the percentages of blastocyst that attached (let-7a: 42.0±8.3%; control: 79.0±5.1%) and spreaded (let-7a: 33.5±2.9%; control: 67.3±3.8%) on fibronectin in vitro. Integrin-β3, a known implantation-related molecule, was demonstrated to be a target of let-7a by 3'-untranslated region reporter assay in cervical cancer cells HeLa, and Western blotting in mouse blastocysts. The inhibitory effect of forced-expression of let-7a on blastocyst attachment and outgrowth was partially nullified in vitro and in vivo by forced-expression of integrin-β3. This study provides the first direct evidence that let-7a is involved in regulating the implantation process partly via modulation of the expression of integrin-β3.  相似文献   

16.
Breast cancer stem cells (BCSCs) have the greatest potential to maintain tumorigenesis in all subtypes of tumor cells and were regarded as the key drivers of tumor. Recent evidence has demonstrated that BCSCs contributed to a high degree of resistance to therapy. However, how BCSCs self renewal and tumorigenicity are maintained remains obscure. Herein, our study illustrated that overexpression of let-7a reduced cell proliferation and mammosphere formation ability of breast cancer stem cells(BCSCs) in a KRas-dependent manner through different pathways in vitro and in vivo. To be specific, we provided the evidence that let-7a was decreased, and reversely the expression of KRas was increased with moderate expression in early stages (I/II) and high expression in advanced stages (III/IV) in breast cancer specimens. In addition, the negative correlation between let-7a and KRas was clearly observed. In vitro, we found that let-7a inhibited mammosphere-forming efficiency and the mammosphere-size via NF-κB and MAPK/ERK pathway, respectively. The inhibitory effect of let-7a on mammosphere formation efficiency and the size of mammospheres was abolished after the depletion of KRas. On the contrary, enforced expression of KRas rescued the effect of let-7a. In vivo, let-7a inhibited the growth of tumors, whereas the negative effect of let-7a was rescued after overexpressing KRas. Taken together, our findings suggested that let-7a played a tumor suppressive role in a KRas-dependent manner.  相似文献   

17.
Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.  相似文献   

18.
19.
The microRNA let-7 regulates late embryonic development by suppressing expression of a number of genes such as c-myc and RAS as well as the embryonic gene high mobility group, A2 (HMGA2). We now demonstrate that HMGA2 is more efficiently targeted by let-7 than RAS. Its expression inversely correlates with the expression of let-7 in the NCI60 cells lines, and the expression of RAS does not change when amounts of let-7 that efficiently silence expression of HMGA2 are introduced into tumor cells. We did not find a difference in the expression of HMGA2 between primary ovarian cancer samples and matching metastases, suggesting that the expression of HMGA2 represents an early event during cancer progression. The late repression of HMGA2 by let-7 during embryonic development, and the early reexpression of HMGA2 during cancer development, is in line with the hypothesis that cancer development represents a case of reverse embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号