首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kallikrein 14 (KLK14) has been proposed as a useful prognostic marker in prostate cancer, with expression reported to be associated with tumour characteristics such as higher stage and Gleason score. KLK14 tumour expression has also shown the potential to predict prostate cancer patients at risk of disease recurrence after radical prostatectomy. The KLKs are a remarkably hormone-responsive family of genes, although detailed studies of androgen regulation of KLK14 in prostate cancer have not been undertaken to date. Using in vitro studies, we have demonstrated that unlike many other prostatic KLK genes that are strictly androgen responsive, KLK14 is more broadly expressed and inversely androgen regulated in prostate cancer cells. Given these results and evidence that KLK14 may play a role in prostate cancer prognosis, we also investigated whether common genetic variants in the KLK14 locus are associated with risk and/or aggressiveness of prostate cancer in approximately 1200 prostate cancer cases and 1300 male controls. Of 41 single nucleotide polymorphisms assessed, three were associated with higher Gleason score (≥7): rs17728459 and rs4802765, both located upstream of KLK14, and rs35287116, which encodes a p.Gln33Arg substitution in the KLK14 signal peptide region. Our findings provide further support for KLK14 as a marker of prognosis in prostate cancer.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) in the KLK3 gene on chromosome 19q13.33 are associated with serum prostate-specific antigen (PSA) levels. Recent genome wide association studies of prostate cancer have yielded conflicting results for association of the same SNPs with prostate cancer risk. Since the KLK3 gene encodes the PSA protein that forms the basis for a widely used screening test for prostate cancer, it is critical to fully characterize genetic variation in this region and assess its relationship with the risk of prostate cancer. We have conducted a next-generation sequence analysis in 78 individuals of European ancestry to characterize common (minor allele frequency, MAF >1%) genetic variation in a 56 kb region on chromosome 19q13.33 centered on the KLK3 gene (chr19:56,019,829–56,076,043 bps). We identified 555 polymorphic loci in the process including 116 novel SNPs and 182 novel insertion/deletion polymorphisms (indels). Based on tagging analysis, 144 loci are necessary to tag the region at an r 2 threshold of 0.8 and MAF of 1% or higher, while 86 loci are required to tag the region at an r 2 threshold of 0.8 and MAF >5%. Our sequence data augments coverage by 35 and 78% as compared to variants in dbSNP and HapMap, respectively. We observed six non-synonymous amino acid or frame shift changes in the KLK3 gene and three changes in each of the neighboring genes, KLK15 and KLK2. Our study has generated a detailed map of common genetic variation in the genomic region surrounding the KLK3 gene, which should be useful for fine-mapping the association signal as well as determining the contribution of this locus to prostate cancer risk and/or regulation of PSA expression.  相似文献   

3.
Measurements of serum prostate-specific antigen (PSA) protein levels form the basis for a widely used test to screen men for prostate cancer. Germline variants in the gene that encodes the PSA protein (KLK3) have been shown to be associated with both serum PSA levels and prostate cancer. Based on a resequencing analysis of a 56?kb region on chromosome 19q13.33, centered on the KLK3 gene, we fine mapped this locus by genotyping tag SNPs in 3,522 prostate cancer cases and 3,338 controls from five case?Ccontrol studies. We did not observe a strong association with the KLK3 variant, reported in previous studies to confer risk for prostate cancer (rs2735839; P?=?0.20) but did observe three highly correlated SNPs (rs17632542, rs62113212 and rs62113214) associated with prostate cancer [P?=?3.41?×?10?4, per-allele trend odds ratio (OR)?=?0.77, 95% CI?=?0.67?C0.89]. The signal was apparent only for nonaggressive prostate cancer cases with Gleason score <7 and disease stage <III (P?=?4.72?×?10?5, per-allele trend OR?=?0.68, 95% CI?=?0.57?C0.82) and not for advanced cases with Gleason score >8 or stage ??III (P?=?0.31, per-allele trend OR?=?1.12, 95% CI?=?0.90?C1.40). One of the three highly correlated SNPs, rs17632542, introduces a non-synonymous amino acid change in the KLK3 protein with a predicted benign or neutral functional impact. Baseline PSA levels were 43.7% higher in control subjects with no minor alleles (1.61?ng/ml, 95% CI?=?1.49?C1.72) than in those with one or more minor alleles at any one of the three SNPs (1.12?ng/ml, 95% CI?=?0.96?C1.28) (P?=?9.70?×?10?5). Together our results suggest that germline KLK3 variants could influence the diagnosis of nonaggressive prostate cancer by influencing the likelihood of biopsy.  相似文献   

4.
5.
The EphB2 gene has been implicated as a tumor suppressor gene somatically altered in both prostate cancer (PC) and colorectal cancer. We have previously shown an association between an EphB2 germline nonsense variant and risk of familial prostate cancer among African American Men (AAM). Here we set out to test the hypothesis that common variation within the EphB2 locus is associated with increased risk of sporadic PC in AAM. We genotyped a set of 341 single nucleotide polymorphisms (SNPs) encompassing the EphB2 locus, including known and novel coding and noncoding variants, in 490 AA sporadic PC cases and 567 matched controls. Single marker-based logistical regression analyses revealed seven EphB2 SNPs showing statistically significant association with prostate cancer risk in our population. The most significant association was achieved for a novel synonymous coding SNP, TGen-624, (Odds Ratio (OR) =?0.22; 95% Confidence Interval (CI) 0.08-0.66, p?=?1×10(-5)). Two other SNPs also show significant associations toward a protective effect rs10465543 and rs12090415 (p?=?1×10(-4)), OR?=?0.49 and 0.7, respectively. Two additional SNPs revealed trends towards an increase in risk of prostate cancer, rs4612601 and rs4263970 (p?=?0.001), OR?=?1.35 and 1.31, respectively. Furthermore, haplotype analysis revealed low levels of linkage disequilibrium within the region, with two blocks being associated with prostate cancer risk among our population. These data suggest that genetic variation at the EphB2 locus may increase risk of sporadic PC among AAM.  相似文献   

6.
Recently, genome-wide association studies have identified loci across a segment of chromosome 8q24 (128,100,000–128,700,000) associated with the risk of breast, colon and prostate cancers. At least three regions of 8q24 have been independently associated with prostate cancer risk; the most centromeric of which appears to be population specific. Haplotypes in two contiguous but independent loci, marked by rs6983267 and rs1447295, have been identified in the Cancer Genetic Markers of Susceptibility project (), which genotyped more than 5,000 prostate cancer cases and 5,000 controls of European origin. The rs6983267 locus is also strongly associated with colorectal cancer. To ascertain a comprehensive catalog of common single-nucleotide polymorphisms (SNPs) across the two regions, we conducted a resequence analysis of 136 kb (chr8: 128,473,000–128,609,802) using the Roche/454 next-generation sequencing technology in 39 prostate cancer cases and 40 controls of European origin. We have characterized a comprehensive catalog of common (MAF > 1%) SNPs within this region, including 442 novel SNPs and have determined the pattern of linkage disequilibrium across the region. Our study has generated a detailed map of genetic variation across the region, which should be useful for choosing SNPs for fine mapping of association signals in 8q24 and investigations of the functional consequences of select common variants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Rare variation in protein coding sequence is poorly captured by GWAS arrays and has been hypothesized to contribute to disease heritability. Using the Illumina HumanExome SNP array, we successfully genotyped 191,032 common and rare non-synonymous, splice site, or nonsense variants in a multiethnic sample of 2,984 breast cancer cases, 4,376 prostate cancer cases, and 7,545 controls. In breast cancer, the strongest associations included either SNPs in or gene burden scores for genes LDLRAD1, SLC19A1, FGFBP3, CASP5, MMAB, SLC16A6, and INS-IGF2. In prostate cancer, one of the most associated SNPs was in the gene GPRC6A (rs2274911, Pro91Ser, OR = 0.88, P = 1.3×10−5) near to a known risk locus for prostate cancer; other suggestive associations were noted in genes such as F13A1, ANXA4, MANSC1, and GP6. For both breast and prostate cancer, several of the most significant associations involving SNPs or gene burden scores (sum of minor alleles) were noted in genes previously reported to be associated with a cancer-related phenotype. However, only one of the associations (rs145889899 in LDLRAD1, p = 2.5×10−7 only seen in African Americans) for overall breast or prostate cancer risk was statistically significant after correcting for multiple comparisons. In addition to breast and prostate cancer, other cancer-related traits were examined (body mass index, PSA level, and alcohol drinking) with a number of known and potentially novel associations described. In general, these findings do not support there being many protein coding variants of moderate to high risk for breast and prostate cancer with odds ratios over a range that is probably required for protein coding variation to play a truly outstanding role in risk heritability. Very large sample sizes will be required to better define the role of rare and less penetrant coding variation in prostate and breast cancer disease genetics.  相似文献   

8.
Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10−28). Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade <8) tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.  相似文献   

9.
Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) that mildly predict prostate cancer risk. These SNPs are local tagging markers for causal gene alterations. Consideration of candidate genes in the tagged regions would be facilitated by additional information on the particular pathomechanisms which contribute to the observed risk increase. In this study we test for an association of prostate cancer tagging SNPs with alterations in DNA repair capacity, a phenotype that is frequently involved in cancer predisposition. DNA repair capacity was assessed on blood lymphocytes from 128 healthy probands after ionizing irradiation. We used the micronucleus (MN) assay to determine the cellular DNA double-strand break repair capacity and flow cytometry to measure damage induced mitotic delay (MD). Probands were genotyped for a panel of 14 SNPs, each representing an independent prostate cancer risk locus previously identified by GWAS. Associations between germline variants and DNA repair capacity were found for the SNPs rs1512268 (8p21), rs6983267 (8q24) and rs10993994 (10q11). The most significant finding was an association of homozygous rs10993994 T-allele carriers with a lower MN frequency (p=0.0003) and also a decreased MD index (p=0.0353). Cells with prostate cancer risk alleles at rs10993994 seem to cope more efficiently with DNA double strand breaks (less MN) in a shorter time (decreased MD index). This intriguing finding imposes concern about the accuracy of repair, with respect to the cancer risk that is mediated by T genotypes. To date, MSMB (microseminoprotein β) is favored as the causal gene at the 10q11 risk locus, since it was the first candidate gene known to be expressionally altered by rs10993994. Based on the present observation, candidate genes from the contexts of DNA repair and apoptosis may be more promising targets for expression studies with respect to the rs10993994 genotype.  相似文献   

10.
Intercellular adhesion molecules (ICAMs) are known to be involved in various human cancers. An ICAM gene cluster lying within a 26 kb region on chromosome 19p13.2, and containing ICAM1, ICAM4, and ICAM5 has recently been identified as harboring a breast and prostate cancer susceptibility locus in two populations of European ancestry from Germany and Australia. The objective of this study was to confirm the ICAM association with prostate cancer in a sample of African American prostate cancer cases (N = 286) and controls (N = 391). Six single nucleotide polymorphisms (SNPs) within the three ICAM genes were genotyped. To control for potential population stratification an ancestry-adjusted association analysis was performed. We found that ICAM1 SNPs, −9A/C (rs5490) and K469E (rs5498) were associated with prostate cancer risk in men with a family history of prostate cancer (P = 0.008). Specifically, increased risk was observed for individuals who possessed the CC genotype of the −9 A/C variant (odds ratio = 2.5; 95% CI = 1.0–6.3) and at least one G allele of non-synonymous K469E variant (odds ratio = 1.8; 95% CI = 1.2–3.1). Strong linkage disequilibrium was observed across the ICAM region (P < 0.001). A common haplotype within the ICAM gene cluster, harboring the −9A/C variant was significantly associated with prostate cancer (P = 0.03), mainly due to men with family history (P = 0.01). Our results replicate previous findings of association of the ICAM gene cluster with prostate cancer and suggest that common genetic variation within ICAM1 and not ICAM5 may be an important risk factor for prostate cancer.  相似文献   

11.

Introduction

Prostate-specific antigen (PSA) testing is a widely accepted screening method for prostate cancer, but with low specificity at thresholds giving good sensitivity. Previous research identified four single nucleotide polymorphisms (SNPs) principally associated with circulating PSA levels rather than with prostate cancer risk (TERT rs2736098, FGFR2 rs10788160, TBX3 rs11067228, KLK3 rs17632542). Removing the genetic contribution to PSA levels may improve the ability of the remaining biologically-determined variation in PSA to discriminate between high and low risk of progression within men with identified prostate cancer. We investigate whether incorporating information on the PSA-SNPs improves the discrimination achieved by a single PSA threshold in men with raised PSA levels.

Materials and Methods

Men with PSA between 3-10ng/mL and histologically-confirmed prostate cancer were categorised as high or low risk of progression (Low risk: Gleason score≤6 and stage T1-T2a; High risk: Gleason score 7–10 or stage T2C). We used the combined genetic effect of the four PSA-SNPs to calculate a genetically corrected PSA risk score. We calculated the Area under the Curve (AUC) to determine how well genetically corrected PSA risk scores distinguished men at high risk of progression from low risk men.

Results

The analysis includes 868 men with prostate cancer (Low risk: 684 (78.8%); High risk: 184 (21.2%)). Receiver operating characteristic (ROC) curves indicate that including the 4 PSA-SNPs does not improve the performance of measured PSA as a screening tool for high/low risk prostate cancer (measured PSA level AU C = 59.5% (95% CI: 54.7,64.2) vs additionally including information from the 4 PSA-SNPs AUC = 59.8% (95% CI: 55.2,64.5) (p-value = 0.40)).

Conclusion

We demonstrate that genetically correcting PSA for the combined genetic effect of four PSA-SNPs, did not improve discrimination between high and low risk prostate cancer in men with raised PSA levels (3-10ng/mL). Replication and gaining more accurate estimates of the effects of the 4 PSA-SNPs and additional variants associated with PSA levels and not prostate cancer could be obtained from subsequent GWAS from larger prospective studies.  相似文献   

12.
13.
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's chi(2) = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's chi(2) = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (pi = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (pi = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer.  相似文献   

14.
Breast cancer is a complex heterogeneous disease involving genetic and epigenetic alterations in genes encoding proteins that are components of various signaling pathways. Candidate gene approach have identified association of genetic variants in the Wnt signaling pathway genes and increased susceptibility to several diseases including breast cancer. Due to the rarity of somatic mutations in key genes of Wnt pathway, we investigated the association of genetic variants in these genes with predisposition to breast cancers. We performed a case-control study to identify risk variants by examining 15 SNPs located in 8 genes associated with Wnt signaling. Genotypic analysis of individual locus showed statistically significant association of five SNPs located in β-catenin, AXIN2, DKK3, SFRP3 and TCF7L2 with breast cancers. Increased risk was observed only with the SNP in β-catenin while the other four SNPs conferred protection against breast cancers. Majority of these associations persisted after stratification of the cases based on estrogen receptor status and age of on-set of breast cancer. The rs7775 SNP in exon 6 of SFRP3 gene that codes for either arginine or glycine exhibited very strong association with breast cancer, even after Bonferroni''s correction. Apart from these five variants, rs3923086 in AXIN2 and rs3763511 in DKK4 that did not show any association in the overall population were significantly associated with early on-set and estrogen receptor negative breast cancers, respectively. This is the first study to utilize pathway based approach to identify association of risk variants in the Wnt signaling pathway genes with breast cancers. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of Wnt pathway as well as screening markers for early detection of breast carcinomas.  相似文献   

15.
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10−14). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.  相似文献   

16.
Compelling evidence demonstrates chromosome 8q24 as a prostate cancer susceptibility locus. In present work we studied whether the common variants of 8q24 region, rs6983267 and rs1447295, were associated with the sporadic prostate cancer risk in the Russian population. Polymorphisms were genotyped in 393 case and 384 control Russian Caucasian men from Siberia region. The A allele of rs1447295 was significantly associated with the risk of prostate cancer (OR[CI 95%] = 1.74 [1.26-2.4], p = 7.8 x 10(-4)). A common G-A haplotype for rs6983267 - rs1447295 also showed an association with prostate cancer risk in Russian population (OR[CI 95%] = 2.03 [1.1 - 3.75], p = 0.02). We performed a meta-analysis combining our results with previous studies to evaluate the association between studied SNPs and prostate cancer risk. Meta-analysis has strongly supported the association for these SNPs (p < 10(-6)). Accordingly our study confirms the association between chromosome 8q24 and prostate cancer risk.  相似文献   

17.
Liu J  Liu J  Wei M  He Y  Liao B  Liao G  Li H  Huang J 《DNA and cell biology》2012,31(7):1296-1302
Single-nucleotide polymorphisms located in the microRNA biogenesis pathway could alter the risk for developing prostate cancer. The present study was intended to identify common genetic variants responsible for prostate cancer susceptibility in the GEMIN4 gene. The high-resolution melting method was used to genotype seven polymorphisms (rs7813, rs4968104, rs3744741, rs2740348, rs1062923, rs910925, and rs910924) in the GEMIN4 gene in 300 prostate cancer patients and 244 matched controls. The encouraging discovery in this study was in the rs2740348. Patients carrying the variant heterozygote GC genotype in the rs2740348 were at a 36% decreased risk of prostate cancer (odds ratio [OR] = 0.64; 95% confidence interval [CI] = 0.42, 0.99). Similarly, this variant allele carrier showed significant risk for prostate cancer (OR = 0.64). In addition, subjects carrying the homozygote TT genotype in the rs7813 had a significantly increased risk of prostate cancer (OR = 2.53, 95% CI = 1.07, 6.28). Two common haplotypes were found to be associated with decreased risk of prostate cancer. In the subgroup analysis, higher risk of more severity of prostate cancer (clinical stage III and IV) was observed in individuals with the rs7813 TT genotype (OR = 2.64, 95% CI = 1.02, 7.64), while lower risk of more severity of prostate cancer was observed in individuals with the rs3744741 T allele (OR = 0.69, 95% CI = 0.50, 0.96). Overall, our study provides substantial support for the association between the GEMIN4 gene and the risk of prostate cancer.  相似文献   

18.
The insulin-like growth factor (IGF) signaling pathway plays an important role in cancer biology. The IGF 1 receptor (IGF1R) overexpression has been associated with a number of hematological neoplasias and solid tumors including breast cancer. However, molecular mechanism involving IGF1R in carcinogenic developments is clearly not known. We investigated the genetic variations across the IGF1R polymorphism and the risk of breast cancer risk in Korean women. A total of 1418 individuals comprising 1026 breast cancer cases and 392 age-matched controls of Korean were included for the analysis. Genomic DNA was extracted from whole blood and single nucleotide polymorphisms (SNPs) were analyzed on the GoldenGate Assay system by Illumina’s Custom Genetic Analysis service. SNPs were selected for linkage disequilibrium (LD) analysis by Haploview. We genotyped total 51 SNPs in the IGF1R gene and examined for association with breast cancer. All the SNPs investigated were in Hardy-Weinberg equilibrium. These SNPs tested were significantly associated with breast cancer risk, after correction for multiple comparisons by adjusting for age at diagnosis, BMI, age at menarche, and age at first parturition. Among 51 IGF1R SNPs, five intron located SNPs (rs8032477, rs7175052, rs12439557, rs11635251 and rs12916884) with homozygous genotype (variant genotype) were associated with decreased risk of breast cancer. Fisher’s combined p-value for the five SNPs was 0.00032. Three intron located SNPs with heterozygous genotypes also had decreased risk of breast cancer. Seven of the 51 IGF1R SNPs were in LD and in one haplotype block, and were likely to be associated with breast cancer risk. Overall, this case-control study demonstrates statistically significant associations between breast cancer risk and polymorphisms in IGF1R gene.  相似文献   

19.
To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1 × 10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ± 500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6 × 10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42 × 10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9 × 10(-16)) and rs7801723 (P = 8.9 × 10(-28)), also mapping to C7orf58 (r(2) = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.  相似文献   

20.
The genetic basis of prostate cancer (PC) is complex and appears to involve multiple susceptibility genes. A number of studies have evaluated a possible correlation between several NER gene polymorphisms and PC risk, but most of them evaluated only single SNPs among XP genes and the results remain inconsistent. Out of 94 SNPs located in seven XP genes (XPAXPG) a total of 15 SNPs were assayed in 720 unselected patients with PC and compared to 1121 healthy adults. An increased risk of disease was associated with the XPD SNP, rs1799793 (Asp312Asn) AG genotype (OR = 2.60; p < 0.001) and with the AA genotype (OR = 531; p < 0.0001) compared to the control population. Haplotype analysis of XPD revealed one protective haplotype and four associated with an increased disease risk, which showed that the A allele (XPD rs1799793) appeared to drive the main effect on promoting prostate cancer risk. Polymorphism in XPD gene appears to be associated with the risk of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号